
KEY - Hollocker
... board, because angular momentum will be conserved during the free-fall motion of the dive. She cannot exert a torque about her CM on herself in isolation, so if there is no angular momentum initially, there will be no rotation during the rest of the dive. 11. The angular velocity of a wheel rotating ...
... board, because angular momentum will be conserved during the free-fall motion of the dive. She cannot exert a torque about her CM on herself in isolation, so if there is no angular momentum initially, there will be no rotation during the rest of the dive. 11. The angular velocity of a wheel rotating ...
Chapter 7 Systems of particles
... 7-1 The motion of a complex object When we projectile a rigid body, the motion of the body looks very complicated. We can consider the motion of the rigid body to be a combination of a parabolic trajectory of a “center of mass” (rotational motion is not considered) plus a rotation about “center of ...
... 7-1 The motion of a complex object When we projectile a rigid body, the motion of the body looks very complicated. We can consider the motion of the rigid body to be a combination of a parabolic trajectory of a “center of mass” (rotational motion is not considered) plus a rotation about “center of ...
Impulse, momentum, and center of mass
... Clearly, the total change in momentum for the system is zero, and this derivation works regardless of whether or not the magnets began at rest. So internal forces like the one shown above cannot change the momentum of a system. If the sum of the external impulses also adds to zero, then the system c ...
... Clearly, the total change in momentum for the system is zero, and this derivation works regardless of whether or not the magnets began at rest. So internal forces like the one shown above cannot change the momentum of a system. If the sum of the external impulses also adds to zero, then the system c ...
Conservation of impulse and momentum
... collide and rebound such that B moves to the right with a speed of 2 m/s. Also find the average impulsive force between the cars if the collision place in 0.5 s. Plan: Use conservation of linear momentum to find the velocity of the car A after collision (all internal impulses cancel). Then use the p ...
... collide and rebound such that B moves to the right with a speed of 2 m/s. Also find the average impulsive force between the cars if the collision place in 0.5 s. Plan: Use conservation of linear momentum to find the velocity of the car A after collision (all internal impulses cancel). Then use the p ...
Momentum!!!
... A 0.015 kg marble moving to the right at 0.225 m/s makes an elastic head-on collision with a 0.030 kg shooter marble moving to the left at 0.180 m/s. After the collision, the smaller marble moves to the left at 0.315 m/s. Assume that neither rotates before or after the collision and that both marbl ...
... A 0.015 kg marble moving to the right at 0.225 m/s makes an elastic head-on collision with a 0.030 kg shooter marble moving to the left at 0.180 m/s. After the collision, the smaller marble moves to the left at 0.315 m/s. Assume that neither rotates before or after the collision and that both marbl ...
Rotational Motion
... Angular Momentum Essential Knowledge 3.F.3: A torque exerted on an object can change the angular momentum of an object. a. Angular momentum is a vector quantity, with its direction determined by a right-hand rule. b. The magnitude of angular momentum of a point object about an axis can be calculate ...
... Angular Momentum Essential Knowledge 3.F.3: A torque exerted on an object can change the angular momentum of an object. a. Angular momentum is a vector quantity, with its direction determined by a right-hand rule. b. The magnitude of angular momentum of a point object about an axis can be calculate ...
Momentum and Impulse
... If two objects are moving in opposite direction, then one direction must be chosen as negative and the other as positive before determining the momentum of the system. What is the momentum of this two-object system, taking “right” to be the positive direction? ...
... If two objects are moving in opposite direction, then one direction must be chosen as negative and the other as positive before determining the momentum of the system. What is the momentum of this two-object system, taking “right” to be the positive direction? ...
Physics 422 - Spring 2013 - Midterm Exam, March 6
... (b) When driven at the angular frequency ω0 , the mass has a peak kinetic energy of Tmax . By how much should the angular frequency be increased to reduce the peak kinetic energy to the value T = Tmax /2? ...
... (b) When driven at the angular frequency ω0 , the mass has a peak kinetic energy of Tmax . By how much should the angular frequency be increased to reduce the peak kinetic energy to the value T = Tmax /2? ...
Chapter6
... In classical mechanics the trajectory of a particle moving under the influence of a force can be completely determined from the initial position and velocity. The total energy of a many particle system must be found from the positions and velocities of the particles as the sum of the kinetic and pot ...
... In classical mechanics the trajectory of a particle moving under the influence of a force can be completely determined from the initial position and velocity. The total energy of a many particle system must be found from the positions and velocities of the particles as the sum of the kinetic and pot ...
momentum - Sharyland High School
... In a collision between two objects, both objects experience forces which are equal in magnitude and opposite in direction. Such forces cause one object to speed up (gain momentum) and the other object to slow down (lose momentum). ...
... In a collision between two objects, both objects experience forces which are equal in magnitude and opposite in direction. Such forces cause one object to speed up (gain momentum) and the other object to slow down (lose momentum). ...
Momentum and Collisions
... large dump truck and a subcompact car, you are better off being in the truck than in the car. Why is this? Many people imagine that the collision force exerted on the car is much greater than that experienced by the truck. To substantiate this view, they point out that the car is crushed, whereas th ...
... large dump truck and a subcompact car, you are better off being in the truck than in the car. Why is this? Many people imagine that the collision force exerted on the car is much greater than that experienced by the truck. To substantiate this view, they point out that the car is crushed, whereas th ...
Chapter 26 – Relativity
... Postulate 1: The laws of physics are the same in all inertial reference frames (the principle of relativity). An inertial reference frame is one in which no accelerations are observed in the absence of external forces. (Recall Newton’s first law). ...
... Postulate 1: The laws of physics are the same in all inertial reference frames (the principle of relativity). An inertial reference frame is one in which no accelerations are observed in the absence of external forces. (Recall Newton’s first law). ...
Document
... changing fast and may become very large The effect is shown by its impulse 3) Impulses of other forces can be ignored ...
... changing fast and may become very large The effect is shown by its impulse 3) Impulses of other forces can be ignored ...
Chapter 7
... You are in a car. If you push on the dashboard, the car does not move. You are an internal force. If you get out of the car and push on the trunk, you can now move the car; you are now an external force. ...
... You are in a car. If you push on the dashboard, the car does not move. You are an internal force. If you get out of the car and push on the trunk, you can now move the car; you are now an external force. ...
Momentum, Impulse and Recoil
... • The momentum, mv, is the amount gained before the cord begins to stretch. Ft is the impulse the cord supplies to reduce the momentum to zero. • Because the rubber cord stretches for a long time, a large time interval t ensures that a small average force F acts on the jumper. • The cord typically s ...
... • The momentum, mv, is the amount gained before the cord begins to stretch. Ft is the impulse the cord supplies to reduce the momentum to zero. • Because the rubber cord stretches for a long time, a large time interval t ensures that a small average force F acts on the jumper. • The cord typically s ...
PHY101 Quiz#3 - People Server at UNCW
... The object's velocity is zero when its acceleration is a maximum. The object's maximum acceleration is equal to its maximum velocity. ...
... The object's velocity is zero when its acceleration is a maximum. The object's maximum acceleration is equal to its maximum velocity. ...
Relativistic angular momentum
""Angular momentum tensor"" redirects to here.In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.Angular momentum is a dynamical quantity derived from position and momentum, and is important; angular momentum is a measure of an object's ""amount of rotational motion"" and resistance to stop rotating. Also, in the same way momentum conservation corresponds to translational symmetry, angular momentum conservation corresponds to rotational symmetry – the connection between symmetries and conservation laws is made by Noether's theorem. While these concepts were originally discovered in classical mechanics – they are also true and significant in special and general relativity. In terms of abstract algebra; the invariance of angular momentum, four-momentum, and other symmetries in spacetime, are described by the Poincaré group and Lorentz group.Physical quantities which remain separate in classical physics are naturally combined in SR and GR by enforcing the postulates of relativity, an appealing characteristic. Most notably; space and time coordinates combine into the four-position, and energy and momentum combine into the four-momentum. These four-vectors depend on the frame of reference used, and change under Lorentz transformations to other inertial frames or accelerated frames.Relativistic angular momentum is less obvious. The classical definition of angular momentum is the cross product of position x with momentum p to obtain a pseudovector x×p, or alternatively as the exterior product to obtain a second order antisymmetric tensor x∧p. What does this combine with, if anything? There is another vector quantity not often discussed – it is the time-varying moment of mass (not the moment of inertia) related to the boost of the centre of mass of the system, and this combines with the classical angular momentum to form an antisymmetric tensor of second order. For rotating mass–energy distributions (such as gyroscopes, planets, stars, and black holes) instead of point-like particles, the angular momentum tensor is expressed in terms of the stress–energy tensor of the rotating object.In special relativity alone, in the rest frame of a spinning object; there is an intrinsic angular momentum analogous to the ""spin"" in quantum mechanics and relativistic quantum mechanics, although for an extended body rather than a point particle. In relativistic quantum mechanics, elementary particles have spin and this is an additional contribution to the orbital angular momentum operator, yielding the total angular momentum tensor operator. In any case, the intrinsic ""spin"" addition to the orbital angular momentum of an object can be expressed in terms of the Pauli–Lubanski pseudovector.