• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Lec 31: Inner products. An inner product on a vector space V
Lec 31: Inner products. An inner product on a vector space V

Question 1 2 3 4 5 6 7 8 9 10 Total Score
Question 1 2 3 4 5 6 7 8 9 10 Total Score

Definition - WordPress.com
Definition - WordPress.com

Introduction to MATLAB Part 1
Introduction to MATLAB Part 1

Chapter III Determinants of Square Matrices Associated with every
Chapter III Determinants of Square Matrices Associated with every

Analysis on arithmetic quotients Chapter I. The geometry of SL(2)
Analysis on arithmetic quotients Chapter I. The geometry of SL(2)

Conjugacy Classes in Maximal Parabolic Subgroups of General
Conjugacy Classes in Maximal Parabolic Subgroups of General

Solving Systems by Graphing
Solving Systems by Graphing

Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors

View File - UET Taxila
View File - UET Taxila

matlab basics - University of Engineering and Technology, Taxila
matlab basics - University of Engineering and Technology, Taxila

Invertible matrix
Invertible matrix

Final Exam Solutions
Final Exam Solutions

Solution - Stony Brook Mathematics
Solution - Stony Brook Mathematics

Gauss elimination
Gauss elimination

Needleman Wunsch Algorithm for Sequence Alignment in
Needleman Wunsch Algorithm for Sequence Alignment in

Algebraic methods 1 Introduction 2 Perfect matching in
Algebraic methods 1 Introduction 2 Perfect matching in

570 SOME PROPERTIES OF THE DISCRIMINANT MATRICES OF A
570 SOME PROPERTIES OF THE DISCRIMINANT MATRICES OF A

Section 2.3
Section 2.3

I n - Duke Computer Science
I n - Duke Computer Science

... NOT be added. ...
Chapter 3
Chapter 3

Linear ODE’s in Non-Commutative Associative Algebras
Linear ODE’s in Non-Commutative Associative Algebras

PDF
PDF

lecture-6 - Computer Science and Engineering
lecture-6 - Computer Science and Engineering

Wigner`s semicircle law
Wigner`s semicircle law

... Exercise 22. Show that the expected ESD of the GUE matrix also converges to µs.c. . 4. Wishart matrices The methods that we are going to present, including the moment method, are applicable beyond the simplest model of Wigner matrices. Here we remark on what we get for Wishart matrices. Most of the ...
< 1 ... 58 59 60 61 62 63 64 65 66 ... 112 >

Matrix multiplication

In mathematics, matrix multiplication is a binary operation that takes a pair of matrices, and produces another matrix. Numbers such as the real or complex numbers can be multiplied according to elementary arithmetic. On the other hand, matrices are arrays of numbers, so there is no unique way to define ""the"" multiplication of matrices. As such, in general the term ""matrix multiplication"" refers to a number of different ways to multiply matrices. The key features of any matrix multiplication include: the number of rows and columns the original matrices have (called the ""size"", ""order"" or ""dimension""), and specifying how the entries of the matrices generate the new matrix.Like vectors, matrices of any size can be multiplied by scalars, which amounts to multiplying every entry of the matrix by the same number. Similar to the entrywise definition of adding or subtracting matrices, multiplication of two matrices of the same size can be defined by multiplying the corresponding entries, and this is known as the Hadamard product. Another definition is the Kronecker product of two matrices, to obtain a block matrix.One can form many other definitions. However, the most useful definition can be motivated by linear equations and linear transformations on vectors, which have numerous applications in applied mathematics, physics, and engineering. This definition is often called the matrix product. In words, if A is an n × m matrix and B is an m × p matrix, their matrix product AB is an n × p matrix, in which the m entries across the rows of A are multiplied with the m entries down the columns of B (the precise definition is below).This definition is not commutative, although it still retains the associative property and is distributive over entrywise addition of matrices. The identity element of the matrix product is the identity matrix (analogous to multiplying numbers by 1), and a square matrix may have an inverse matrix (analogous to the multiplicative inverse of a number). A consequence of the matrix product is determinant multiplicativity. The matrix product is an important operation in linear transformations, matrix groups, and the theory of group representations and irreps.Computing matrix products is both a central operation in many numerical algorithms and potentially time consuming, making it one of the most well-studied problems in numerical computing. Various algorithms have been devised for computing C = AB, especially for large matrices.This article will use the following notational conventions: matrices are represented by capital letters in bold, e.g. A, vectors in lowercase bold, e.g. a, and entries of vectors and matrices are italic (since they are scalars), e.g. A and a. Index notation is often the clearest way to express definitions, and is used as standard in the literature. The i, j entry of matrix A is indicated by (A)ij or Aij, whereas a numerical label (not matrix entries) on a collection of matrices is subscripted only, e.g. A1, A2, etc.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report