• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Read the supplementary notes
Read the supplementary notes

Sampling Distributions
Sampling Distributions

Objective Experiments Glossary of Statistical Terms
Objective Experiments Glossary of Statistical Terms

Slides - The Fenyo Lab
Slides - The Fenyo Lab

Basic Probability Lesson
Basic Probability Lesson

signif_old
signif_old

Document
Document

CN 8.1B The Binomial Theorem - Fort Thomas Independent Schools
CN 8.1B The Binomial Theorem - Fort Thomas Independent Schools

Chapter 6: Normal Distribution
Chapter 6: Normal Distribution

Chapter_14
Chapter_14

No Slide Title
No Slide Title

Unit 15 – Statistics Study Sheet Distributions are described by the
Unit 15 – Statistics Study Sheet Distributions are described by the

hypothesis test
hypothesis test

Chapter 8: Introduction to Hypothesis Testing
Chapter 8: Introduction to Hypothesis Testing

Random Variable Facts
Random Variable Facts

Jointly Distributed Random Variables
Jointly Distributed Random Variables

MM_Lab
MM_Lab

Confidence Interval for µ - Department of Statistics and Probability
Confidence Interval for µ - Department of Statistics and Probability

... store workers who are injured while on the job falls between 0.004 and 0.046. • If we had applied the standard large-sample confidence interval formula, we would have obtained the following interval which has negative lower bound. ...
June 2005 - 6687 Statistics S5 - Question paper
June 2005 - 6687 Statistics S5 - Question paper

Probability, Random variable and Stochastic Process
Probability, Random variable and Stochastic Process

Document
Document

Chi-Square Goodness of Fit Test
Chi-Square Goodness of Fit Test

sample test 1 - Kennesaw State University | College of Science
sample test 1 - Kennesaw State University | College of Science

card deck. What is the probabil
card deck. What is the probabil

TDT70: Uncertainty in Artificial Intelligence
TDT70: Uncertainty in Artificial Intelligence

< 1 ... 356 357 358 359 360 361 362 363 364 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report