
Section 2 Electricity and Magnetism
... Explain how electricity can produce motion. Explain how motion can produce electricity. ...
... Explain how electricity can produce motion. Explain how motion can produce electricity. ...
to go to any of the pages listed below, click on its title
... New technology has provided better detectors for the tiny magnetic fields produced by organs. One of the newest and most sensitive detectors is known as SQUID. This name stands for Superconducting Quantum Interference Device. Much of the research done with SQUID on human magnetism is centered on the ...
... New technology has provided better detectors for the tiny magnetic fields produced by organs. One of the newest and most sensitive detectors is known as SQUID. This name stands for Superconducting Quantum Interference Device. Much of the research done with SQUID on human magnetism is centered on the ...
PowerPoint
... A square loop of side a lies in the x-z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the +z axis. Assume a, I, and B are known. How much does the potential energy of the system change as the coil moves from its initial position to i ...
... A square loop of side a lies in the x-z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the +z axis. Assume a, I, and B are known. How much does the potential energy of the system change as the coil moves from its initial position to i ...
Lecture PowerPoint Chapter 21 Giancoli Physics: Principles with
... from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials ...
... from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials ...
chapter-23
... The coils in these two circuits are wound around a common core, but the circuits are electrically insulated from each other. According to Lenz’s law, the current induced in Circuit 1 flows ________ when the switch is closed, and then, with the switch kept closed, it flows ________ as the sliding con ...
... The coils in these two circuits are wound around a common core, but the circuits are electrically insulated from each other. According to Lenz’s law, the current induced in Circuit 1 flows ________ when the switch is closed, and then, with the switch kept closed, it flows ________ as the sliding con ...
Evolution of Electromagnetics in the 19th Century
... filings and he considered them as physical as light rays. Because such lines connect magnetic poles of opposite polarity, they appeared to convey the attractive force like rubber strings. On the other hand, adjacent lines ending to magnetic poles of the same polarity act as tubes under pressure tend ...
... filings and he considered them as physical as light rays. Because such lines connect magnetic poles of opposite polarity, they appeared to convey the attractive force like rubber strings. On the other hand, adjacent lines ending to magnetic poles of the same polarity act as tubes under pressure tend ...
Force between magnets
Magnets exert forces and torques on each other due to the complex rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets, therefore, is the magnetic dipole–dipole interaction. If all of the magnetic dipoles that make up two magnets are known then the net force on both magnets can be determined by summing up all these interactions between the dipoles of the first magnet and that of the second.It is always more convenient to model the force between two magnets as being due to forces between magnetic poles having magnetic charges 'smeared' over them. Such a model fails to account for many important properties of magnetism such as the relationship between angular momentum and magnetic dipoles. Further, magnetic charge does not exist. This model works quite well, though, in predicting the forces between simple magnets where good models of how the 'magnetic charge' is distributed is available.