Magnetism - Practice - Little Miami Schools
... Sir William Gilbert lived in England in the 1500s. He is remembered today for his investigations into electricity and magnetism. In fact, he is sometimes credited with founding the science of magnetism. He published descriptions of his many investigations in a book called De Magnete or “On the Magne ...
... Sir William Gilbert lived in England in the 1500s. He is remembered today for his investigations into electricity and magnetism. In fact, he is sometimes credited with founding the science of magnetism. He published descriptions of his many investigations in a book called De Magnete or “On the Magne ...
ELECTRIC MOTOR
... A change in magnetic field associated with a conductor will induce a electric current in the conductor. This phenomenon is known as electromagnetic induction. The direction of induced current can be found using Fleming’s right-hand rule. Stretch the thumb, forefinger and middle finger of right hand ...
... A change in magnetic field associated with a conductor will induce a electric current in the conductor. This phenomenon is known as electromagnetic induction. The direction of induced current can be found using Fleming’s right-hand rule. Stretch the thumb, forefinger and middle finger of right hand ...
knowledge quiz - Discovery Education
... 1. Which is the best explanation of magnetic force? A. Magnetism is a metal’s gravity. B. Magnetism is the attraction between like particles. C. Magnetism is the force exerted by an electric current. D. Magnetism is none of the above. 2. A bar magnet has two poles — a north pole and a south pole. If ...
... 1. Which is the best explanation of magnetic force? A. Magnetism is a metal’s gravity. B. Magnetism is the attraction between like particles. C. Magnetism is the force exerted by an electric current. D. Magnetism is none of the above. 2. A bar magnet has two poles — a north pole and a south pole. If ...
SUMMARY 1. Define motor and generator. A motor is a device
... while a battery is attached turns ...
... while a battery is attached turns ...
Electric generator
... within another magnetic field. The same poles of the two magnetic fields will repel and the armature will turn. As the commutator turns half a turn the brushes will be in contact with the other ring of the commutator. This will reverse the flow of electrons going through the armature and hence the m ...
... within another magnetic field. The same poles of the two magnetic fields will repel and the armature will turn. As the commutator turns half a turn the brushes will be in contact with the other ring of the commutator. This will reverse the flow of electrons going through the armature and hence the m ...
Magnetism.
... If an electric current produces a magnetic field, then a magnet should be able to generate an electric current. A current is produced in a wire when there is relative motion between the wire and a magnetic field. Such a current is called an induced current. The effect is called electromagnetic induc ...
... If an electric current produces a magnetic field, then a magnet should be able to generate an electric current. A current is produced in a wire when there is relative motion between the wire and a magnetic field. Such a current is called an induced current. The effect is called electromagnetic induc ...
Magnetic Fields and Oersted`s Principle
... The discovery of magnets is attributed in legend to Magnes, a shepherd who lived in the area of Magnesia, Greece, over 4000 years ago. He was surprised one day when he stepped on a rock and the iron nails in his sandals stuck to it. This type of rock came to be known as magnetite. Basic Properties o ...
... The discovery of magnets is attributed in legend to Magnes, a shepherd who lived in the area of Magnesia, Greece, over 4000 years ago. He was surprised one day when he stepped on a rock and the iron nails in his sandals stuck to it. This type of rock came to be known as magnetite. Basic Properties o ...
Electromagnetic Induction
... Where F force on conductor (N), B = magnetic field strength (T), I = current in conductor (A) and L = length of conductor in magnetic field (m) A current flowing parallel to a magnetic field experiences no force. The formula has been generalised, noting that the force is zero when the angle is zero ...
... Where F force on conductor (N), B = magnetic field strength (T), I = current in conductor (A) and L = length of conductor in magnetic field (m) A current flowing parallel to a magnetic field experiences no force. The formula has been generalised, noting that the force is zero when the angle is zero ...
Force between magnets
Magnets exert forces and torques on each other due to the complex rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets, therefore, is the magnetic dipole–dipole interaction. If all of the magnetic dipoles that make up two magnets are known then the net force on both magnets can be determined by summing up all these interactions between the dipoles of the first magnet and that of the second.It is always more convenient to model the force between two magnets as being due to forces between magnetic poles having magnetic charges 'smeared' over them. Such a model fails to account for many important properties of magnetism such as the relationship between angular momentum and magnetic dipoles. Further, magnetic charge does not exist. This model works quite well, though, in predicting the forces between simple magnets where good models of how the 'magnetic charge' is distributed is available.