• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
further questions
further questions

Falling Objects
Falling Objects

ODU-Mechanics-Questions
ODU-Mechanics-Questions

07-1 Note 07 Impulse and Momentum ∑ = ∑ =
07-1 Note 07 Impulse and Momentum ∑ = ∑ =

angular momentum
angular momentum

... To start the playground merry-go-round rota3ng (radius = 2m), a rope is wrapped around it and pulled. A force of 200 N is exerted on the rope for 10 seconds. During this 3me the merry-goround makes one complete revolu3on. 1.  Find the torque exerted by the rope on the merry-go-round. 2.  Find ...
Newtonian Mechanics
Newtonian Mechanics

11-Apr-16 15 - Fulton Schools of Engineering Tutoring Centers
11-Apr-16 15 - Fulton Schools of Engineering Tutoring Centers

Document
Document

Exam II Difficult Problems
Exam II Difficult Problems

... R above a horizontal surface. The acceleration due to gravity is g. The block slides along the inside of a frictionless circular hoop of radius R ...
Chapter 8 Momentum and Its Conservation
Chapter 8 Momentum and Its Conservation

Physics Study Guide - Barnstable Academy
Physics Study Guide - Barnstable Academy

Problem: 2nd Law and Pulleys (CM-1993)
Problem: 2nd Law and Pulleys (CM-1993)

Physics Study Guide - Barnstable Academy
Physics Study Guide - Barnstable Academy

FE1
FE1

Systems of particles
Systems of particles

... So far, we have discussed only the application of Newton’s laws to particles, or to bodies in situations where they can be treated as particles — planets in orbit round the Sun, for example. In this chapter, we apply Newton’s laws to systems of interacting particles, which could be as simple as two ...
Chapter 7: Using Vectors: Motion and Force
Chapter 7: Using Vectors: Motion and Force

Introduction to Classical Mechanics 1 HISTORY
Introduction to Classical Mechanics 1 HISTORY

... After the publication of Principia, Newton was the most renowned scientist in the world. His achievement was fully recognized during his lifetime. Today scientists and engineers still use Newton’s theory of mechanics. In the 20th century some limitations of Newtonian mechanics were discovered: Class ...
Simple Harmonic Motion - Physics Introductory Labs at Stony Brook
Simple Harmonic Motion - Physics Introductory Labs at Stony Brook

Momentum and Collisions
Momentum and Collisions

... Example 6.2: Two identical 1500 kg cars are moving perpendicular to each other. One moves with a speed of 25.0 m/s due north and the other moves at 15.0 m/s due east. What is the total linear momentum of the system? ...
weight - ParishPhysics
weight - ParishPhysics

Chapter 6
Chapter 6

Introduction to mechanical engineering lecture notes
Introduction to mechanical engineering lecture notes

... objects as a consequence of its physical state. Energy is a scalar physical quantity. In the International System of Units (SI), energy is measured in joules, but in some fields other units such as kilowatt-hours and kilocalories are also used. Different forms of energy include kinetic, potential, t ...
Relationships Between Vertical Jump Strength Metrics and 5 Meters
Relationships Between Vertical Jump Strength Metrics and 5 Meters

simple harmonic motion
simple harmonic motion

Velocity and Acceleration PowerPoint
Velocity and Acceleration PowerPoint

... • S8P5 Students will recognize characteristics of gravity, electricity, and magnetism as major kinds of forces acting in nature. • a. Recognize that every object exerts gravitational force on every other object and that the force exerted depends on how much mass the objects have and how far apart th ...
< 1 ... 24 25 26 27 28 29 30 31 32 ... 156 >

Specific impulse

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of propellant consumed, and is dimensionally equivalent to the thrust generated per unit propellant flow rate. If mass (kilogram or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound) is used instead, then specific impulse has units of time (seconds). The conversion constant between these two versions is the standard gravitational acceleration constant (g0). The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket, the less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.Specific impulse is a useful value to compare engines, much like miles per gallon or liters per 100 kilometers is used for cars. A propulsion method and system with a higher specific impulse is more propellant-efficient. While the unit of seconds can seem confusing to laypeople, it is fairly simple to understand as ""hover-time"": how long a rocket can ""hover"" before running out of fuel, given the weight of that propellant/fuel. Of course, the weight of the rocket has to be taken out of consideration and so does the reduction in fuel weight as it's expended; the basic idea is ""how long can any given amount of x hold itself up"". Obviously that must mean ""...against Earth's gravity"", which means nothing in non-Earth conditions; hence Isp being given in velocity when propellant is measured in mass rather than weight, and the question becomes ""how fast can any given amount of x accelerate itself?""Note that Isp describes efficiency in terms of amount of propellant, and does not include the engine, structure or power source. Higher Isp means less propellant needed to impart a given momentum. Some systems with very high Isp (cf. ion thrusters) may have relatively very heavy/massive power generators, and produce thrust over a long period; thus, while they are ""efficient"" in terms of propellant mass carried, they may actually be quite poor at delivering high thrust as compared to ""less efficient"" engine/propellant designs.Another number that measures the same thing, usually used for air breathing jet engines, is specific fuel consumption. Specific fuel consumption is inversely proportional to specific impulse and the effective exhaust velocity. The actual exhaust velocity is the average speed of the exhaust jet, which includes fuel combustion products, nitrogen, and argon, as it leaves air breathing engine. The effective exhaust velocity is the exhaust velocity that the combusted fuel and atmospheric oxygen only would need to produce the same thrust. The two are identical for an ideal rocket working in vacuum, but are radically different for an air-breathing jet engine that obtains extra thrust by accelerating the non-combustible components of the air. Specific impulse and effective exhaust velocity are proportional.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report