• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
PPL1 Intro and Describing Motion CH 1 and 2
PPL1 Intro and Describing Motion CH 1 and 2

Chapter 6 - Notes
Chapter 6 - Notes

Newton`s Formulas Practice Worksheet
Newton`s Formulas Practice Worksheet

Lecture - Force and Acceleration File
Lecture - Force and Acceleration File

Exam 3
Exam 3

Review for Test (Newton`s 2nd and 3rd Laws)
Review for Test (Newton`s 2nd and 3rd Laws)

2nd Term Exam - UTA HEP WWW Home Page
2nd Term Exam - UTA HEP WWW Home Page

Newton`s First Law
Newton`s First Law

A. Momentum Conservation in Collisions
A. Momentum Conservation in Collisions

18 /9 - University of St. Thomas
18 /9 - University of St. Thomas

Word
Word

Momentum and Impulse
Momentum and Impulse

Inclined Planes:
Inclined Planes:

4 - UWO Physics
4 - UWO Physics

Modeling with Integrals as Net Change
Modeling with Integrals as Net Change

Unit 8 Student Notes
Unit 8 Student Notes

Force, Mass, and Acceleration
Force, Mass, and Acceleration

Chapter 12 Notes - Brookville Local Schools
Chapter 12 Notes - Brookville Local Schools

FINAL EXAM REVIEW GUIDE
FINAL EXAM REVIEW GUIDE

Agenda Tests 4.1 Describing Motion How do we describe motion?
Agenda Tests 4.1 Describing Motion How do we describe motion?

PS Unit 2 Motion
PS Unit 2 Motion

Solutions for class #7 from Yosumism website Problem 44:
Solutions for class #7 from Yosumism website Problem 44:

... One can derive the frequency of small oscillation for a rigid body in general by using the torque form of Newton's Laws: . (I is moment of inertia, r is moment arm) In this case, one has a constant downwards force , which acts at a moment arm angle . Thus, , where the approximation works if ...
Circular Motion Notes
Circular Motion Notes

drburtsphysicsnotes2 - hardingscienceinstitute
drburtsphysicsnotes2 - hardingscienceinstitute

... Q: If you straddle equally, two scales, what will the reading be on each scale?  A: Half your weight (try it!) ...
solution - Seattle Central College
solution - Seattle Central College

< 1 ... 98 99 100 101 102 103 104 105 106 ... 156 >

Specific impulse

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of propellant consumed, and is dimensionally equivalent to the thrust generated per unit propellant flow rate. If mass (kilogram or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound) is used instead, then specific impulse has units of time (seconds). The conversion constant between these two versions is the standard gravitational acceleration constant (g0). The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket, the less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.Specific impulse is a useful value to compare engines, much like miles per gallon or liters per 100 kilometers is used for cars. A propulsion method and system with a higher specific impulse is more propellant-efficient. While the unit of seconds can seem confusing to laypeople, it is fairly simple to understand as ""hover-time"": how long a rocket can ""hover"" before running out of fuel, given the weight of that propellant/fuel. Of course, the weight of the rocket has to be taken out of consideration and so does the reduction in fuel weight as it's expended; the basic idea is ""how long can any given amount of x hold itself up"". Obviously that must mean ""...against Earth's gravity"", which means nothing in non-Earth conditions; hence Isp being given in velocity when propellant is measured in mass rather than weight, and the question becomes ""how fast can any given amount of x accelerate itself?""Note that Isp describes efficiency in terms of amount of propellant, and does not include the engine, structure or power source. Higher Isp means less propellant needed to impart a given momentum. Some systems with very high Isp (cf. ion thrusters) may have relatively very heavy/massive power generators, and produce thrust over a long period; thus, while they are ""efficient"" in terms of propellant mass carried, they may actually be quite poor at delivering high thrust as compared to ""less efficient"" engine/propellant designs.Another number that measures the same thing, usually used for air breathing jet engines, is specific fuel consumption. Specific fuel consumption is inversely proportional to specific impulse and the effective exhaust velocity. The actual exhaust velocity is the average speed of the exhaust jet, which includes fuel combustion products, nitrogen, and argon, as it leaves air breathing engine. The effective exhaust velocity is the exhaust velocity that the combusted fuel and atmospheric oxygen only would need to produce the same thrust. The two are identical for an ideal rocket working in vacuum, but are radically different for an air-breathing jet engine that obtains extra thrust by accelerating the non-combustible components of the air. Specific impulse and effective exhaust velocity are proportional.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report