Review of 1st Semester
... c) just before it hits the ground d) halfway between the ground and the highest point e) speed is always constant ...
... c) just before it hits the ground d) halfway between the ground and the highest point e) speed is always constant ...
PHYSICS 231 Review problems for midterm 1
... force is slowing it down. This goes on until it reaches the highest point, where the velocity/speed equals zero. The ball than moves down: the velocity becomes negative, but the speed (not a vector, just a positive number) increases. So answer c is correct. PHY 231 ...
... force is slowing it down. This goes on until it reaches the highest point, where the velocity/speed equals zero. The ball than moves down: the velocity becomes negative, but the speed (not a vector, just a positive number) increases. So answer c is correct. PHY 231 ...
Simple Machines
... The blade is a compound inclined plane, consisting of two inclined planes placed so that the planes meet at one edge. The edge where the two planes meet is pushed into a solid or fluid substance and overcomes the resistance of materials to separate by transferring the force exerted against the mater ...
... The blade is a compound inclined plane, consisting of two inclined planes placed so that the planes meet at one edge. The edge where the two planes meet is pushed into a solid or fluid substance and overcomes the resistance of materials to separate by transferring the force exerted against the mater ...
SECOND MIDTERM -- REVIEW PROBLEMS
... An elevator and its load have combined mass of 1600 kg. Find the tension in the supporting cable when the elevator, originally moving downward at 20 m/s, is brought to rest with constant acceleration in a distance of 50 m. ...
... An elevator and its load have combined mass of 1600 kg. Find the tension in the supporting cable when the elevator, originally moving downward at 20 m/s, is brought to rest with constant acceleration in a distance of 50 m. ...
Quiz 07-2 Rotation
... a) zero newtons b) 100 N c) 600 N d) 800 N e) 1000 N ____ 13. A string is wrapped around a pulley of radius 0.05 m and moment of inertia 0.2 kg • m2. If the string is pulled with a force F, the resulting angular acceleration of the pulley is 2 rad/s2. Determine the magnitude of the force F. ...
... a) zero newtons b) 100 N c) 600 N d) 800 N e) 1000 N ____ 13. A string is wrapped around a pulley of radius 0.05 m and moment of inertia 0.2 kg • m2. If the string is pulled with a force F, the resulting angular acceleration of the pulley is 2 rad/s2. Determine the magnitude of the force F. ...