Physics 106P: Lecture 1 Notes
... angular velocity and acceleration are vector quantities. So far we only talked about the magnitude of these vectors. But as vectors they also have a direction. Both angular velocity and acceleration point along the rotation axis. ...
... angular velocity and acceleration are vector quantities. So far we only talked about the magnitude of these vectors. But as vectors they also have a direction. Both angular velocity and acceleration point along the rotation axis. ...
Slide 1
... of the lines represents the field strength. 5. The arrows show ________________because they point attraction __________________. inward gravitational 6. This E resembles Earth’s _____________________ field as it from far away would be seen _____________________ ...
... of the lines represents the field strength. 5. The arrows show ________________because they point attraction __________________. inward gravitational 6. This E resembles Earth’s _____________________ field as it from far away would be seen _____________________ ...
Goal: To understand how Galileo and Newton used experimentation
... the lake is 500 miles across)? ...
... the lake is 500 miles across)? ...
File
... 10. A capacitor is a circuit device that stores charge. It typically consists of two metal plates that are separated by a distance. Often, batteries are used to charge the plates. The image to the right shows a parallel plate capacitor. The electric field is very nearly constant inside a parallel pl ...
... 10. A capacitor is a circuit device that stores charge. It typically consists of two metal plates that are separated by a distance. Often, batteries are used to charge the plates. The image to the right shows a parallel plate capacitor. The electric field is very nearly constant inside a parallel pl ...
Centrifugal *force*: The fake force
... • An object will resist a change in its state (either at rest or in motion) unless acted upon by an unbalanced force • What is the current state of an object experiencing uniform circular motion? • What will it “want” to continue doing? • Inertia in action ...
... • An object will resist a change in its state (either at rest or in motion) unless acted upon by an unbalanced force • What is the current state of an object experiencing uniform circular motion? • What will it “want” to continue doing? • Inertia in action ...
Cross Product
... If a particle with linear momentum p is at a position r with respect to some point, then its angular momentum L is the cross product of r and p L=rxp ...
... If a particle with linear momentum p is at a position r with respect to some point, then its angular momentum L is the cross product of r and p L=rxp ...
Fundamental interaction
Fundamental interactions, also known as fundamental forces, are the interactions in physical systems that don't appear to be reducible to more basic interactions. There are four conventionally accepted fundamental interactions—gravitational, electromagnetic, strong nuclear, and weak nuclear. Each one is understood as the dynamics of a field. The gravitational force is modeled as a continuous classical field. The other three are each modeled as discrete quantum fields, and exhibit a measurable unit or elementary particle.Gravitation and electromagnetism act over a potentially infinite distance across the universe. They mediate macroscopic phenomena every day. The other two fields act over minuscule, subatomic distances. The strong nuclear interaction is responsible for the binding of atomic nuclei. The weak nuclear interaction also acts on the nucleus, mediating radioactive decay.Theoretical physicists working beyond the Standard Model seek to quantize the gravitational field toward predictions that particle physicists can experimentally confirm, thus yielding acceptance to a theory of quantum gravity (QG). (Phenomena suitable to model as a fifth force—perhaps an added gravitational effect—remain widely disputed). Other theorists seek to unite the electroweak and strong fields within a Grand Unified Theory (GUT). While all four fundamental interactions are widely thought to align at an extremely minuscule scale, particle accelerators cannot produce the massive energy levels required to experimentally probe at that Planck scale (which would experimentally confirm such theories). Yet some theories, such as the string theory, seek both QG and GUT within one framework, unifying all four fundamental interactions along with mass generation within a theory of everything (ToE).