• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Momentum!!!
Momentum!!!

Curriculum Map
Curriculum Map

The Graviton Equations
The Graviton Equations

Momentum
Momentum

... • An amount that is conserved is the same amount after an event as it was before. • The total amount of momentum objects have is conserved when they collide. • Momentum may be transferred from one object to another, but none is lost. • This fact is called the law of conservation of momentum. • The ...
Document
Document

Document
Document

Student Exploration Sheet: Growing Plants
Student Exploration Sheet: Growing Plants

... B. Compare the first and third lines of data. How did tripling the force affect the acceleration of the cart? _______________________________________________ C. A cart with two mass units and three fans has twice the mass as a cart with just three fans. How did doubling the mass affect the accelerat ...
Chapter 7 Impulse and Momentum continued
Chapter 7 Impulse and Momentum continued

... Elastic collision -- One in which the total kinetic energy of the system after the collision is equal to the total kinetic energy before the collision. Inelastic collision -- One in which the total kinetic energy of the system after the collision is not equal to the total kinetic energy before the c ...
Forces - Chabot College
Forces - Chabot College

... Goals for Chapter 4 • To learn the relationship between mass, acceleration, and force: Newton’s Second Law of Motion: F = ma a = F/m • To relate mass (quantity of matter) and weight (force on that matter from gravity) ...
AP Physics 1: Algebra-Based 2016 Free
AP Physics 1: Algebra-Based 2016 Free

1 HOOKE`S LAW AND SIMPLE HARMONIC MOTION Objectives
1 HOOKE`S LAW AND SIMPLE HARMONIC MOTION Objectives

1st Semester Exam Physics 2011-2012
1st Semester Exam Physics 2011-2012

Governor - WordPress.com
Governor - WordPress.com

Physics 112 Course Review #1 Due Friday, Dec. 5 1. Describe what
Physics 112 Course Review #1 Due Friday, Dec. 5 1. Describe what

Basic Mechanics
Basic Mechanics

... a. It is represented by the symbol I. b. It indicates the distribution of the mass of a system about its center of mass. c. It is smallest about the twist axis. d. The unit of measurement is kgm2 15. Which of the following body segments has its center of mass closest to the midpoint of segment lengt ...
Midterm
Midterm

Chapter 6 Section 2 Newton`s Laws of Motion
Chapter 6 Section 2 Newton`s Laws of Motion

Lecture slides with notes
Lecture slides with notes

Gravitation
Gravitation

... space the total force that would be experienced by a unit mass, that is, 1 kilogram, at that point. This idea slowly developed and in 1849 Michael Faraday, in explaining the interactions between electric charges and between magnets, formalised the concept, calling it a ‘field’. A field is more preci ...
PreLecture 07
PreLecture 07

Electrostatics Note Packet - Hicksville Public Schools / Homepage
Electrostatics Note Packet - Hicksville Public Schools / Homepage

9.2 First Law of Motion
9.2 First Law of Motion

F - learnphysics
F - learnphysics

File - wentworth science
File - wentworth science

Newton`s Third Law of Motion CHECK YOUR ANSWER
Newton`s Third Law of Motion CHECK YOUR ANSWER

< 1 ... 53 54 55 56 57 58 59 60 61 ... 229 >

Mass versus weight



In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report