• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
in the document - XP
in the document - XP

... organization. Both incoming and internally generated documents are automatically abstracted, characterized by a word pattern, and sent automatically to appropriate action points.” ...
A Framework for Summarization of Multi-topic Web Sites
A Framework for Summarization of Multi-topic Web Sites

A New Entity Salience Task with Millions of Training Examples
A New Entity Salience Task with Millions of Training Examples

... tagger and dependency parser, comparable in accuracy to the current Stanford dependency parser (Klein and Manning, 2003); an NP extractor that uses POS tags and dependency edges to identify a set of entity mentions; a coreference resolver, comparable to that of Haghighi and Klein, (2009) for cluster ...
Update Summarization - NUS School of Computing
Update Summarization - NUS School of Computing

... – Cue/stigma phrases – Sentence position (relative to document, section, paragraph) – Sentence length – TF×IDF, TF scores – Similarity (with title, context, query) ...
NUS at DUC 2007 - National University of Singapore
NUS at DUC 2007 - National University of Singapore

... – Models how nodes in multi-document graphs are added – Skew degree = how many iterations to wait before adding the 1st sentence of the next document ...
Can Word Probabilities from LDA be Simply Added up to Represent
Can Word Probabilities from LDA be Simply Added up to Represent

... This research was supported by the National Science Foundation (DRK-12-0918409, 1108845), the Institute of Education Sciences (R305H050169, R305B070349, R305A080589, R305A080594, R305G020018, R305C120001), Army Research Lab (W911INF12-2-0030), and the Office of Naval Research (N00014-00-1-0600, N000 ...
2006 Paula Matuszek
2006 Paula Matuszek

Multi-Sentence Compression: Finding Shortest Paths
Multi-Sentence Compression: Finding Shortest Paths

... of news classification and clustering with a production quality. Apart from that, it is a rich source of multilingual data. We collected news clusters in English and Spanish, 10-30 articles each, 24 articles on average. To get sets of similar sentences we aggregated first sentences from every articl ...
Descriptive Data Summarization
Descriptive Data Summarization

... Trimmed mean – A major problem with the mean is its sensitivity to extreme (e.g., outlier) values. – Even a small number of extreme values can corrupt the mean. – the trimmed mean is the mean obtained after cutting off values at the high and low extremes. – For example, we can sort the values and re ...
A Redundancy-Aware Sentence Regression Framework for
A Redundancy-Aware Sentence Regression Framework for

Text Summarization by Sentence Extraction and Syntactic Pruning
Text Summarization by Sentence Extraction and Syntactic Pruning

CL35491494
CL35491494

... thus leading to better results in shorter time. Keyphrases are representative of the complete document. Irrelevant results can be reduced if search is based on keyphrases. ...
Machine Reading
Machine Reading

... Machine Reading (MR) is very different from current semantic NLP research areas such as Information Extraction (IE) or Question Answering (QA). Many NLP tasks utilize supervised learning techniques, which rely on hand-tagged training examples. For example, IE systems often utilize extraction rules l ...
Use of Genetic Algorithm for Cohesive Summary Extraction to Assist
Use of Genetic Algorithm for Cohesive Summary Extraction to Assist

Extracting Attractive Summaries for News Propagation on Microblogs
Extracting Attractive Summaries for News Propagation on Microblogs

... concerned by a large number of people. The common way of releasing news on microblogs is to post human-edited short summaries on microblog sites, and the corresponding full news articles can be found via a URL link to external news portals. Usually, an attractive news summary will often bring more p ...
Topic-based Multi-document Summarization using Differential
Topic-based Multi-document Summarization using Differential

{a}, {2} - Kent State University
{a}, {2} - Kent State University

Evolutionary Models of Text for Multi
Evolutionary Models of Text for Multi

A Topic-driven Summarization using K-mean
A Topic-driven Summarization using K-mean

... query-focused multi-document summarization that uses k-mean clustering, term-frequency and inversesentence- frequency method for sentence weighting to rank the sentences of the documents with respect to a given query. The proposed method finds the proximity of documents and query, and later uses thi ...
Text Summarization using PSO
Text Summarization using PSO

1

Automatic summarization

Automatic summarization is the process of reducing a text document with a computer program in order to create a summary that retains the most important points of the original document. As the problem of information overload has grown, and as the quantity of data has increased, so has interest in automatic summarization. Technologies that can make a coherent summary take into account variables such as length, writing style and syntax. Automatic data summarization is a very important area within machine learning and data mining. Summarization technologies are used today, in a large number of sectors in industry today. An example of the use of summarization technology is search engines such as Google. Other examples include document summarization, image collection summarization and video summarization. The main idea of summarization is to find a representative subset of the data, which contains the information of the entire set. Document summarization, tries to automatically create a representative summary or abstract of the entire document, by finding the most informative sentences. Similarly, in image summarization the system finds the most representative and important (or salient) images. Similarly, in consumer videos one would want to remove the boring or repetitive scenes, and extract out a much shorter and concise version of the video. This is also important, say for surveillance videos, where one might want to extract out only important events in the recorded video, since most of the events are uninteresting with nothing going on.Generally, there are two approaches to automatic summarization: extraction and abstraction. Extractive methods work by selecting a subset of existing words, phrases, or sentences in the original text to form the summary. In contrast, abstractive methods build an internal semantic representation and then use natural language generation techniques to create a summary that is closer to what a human might generate. Such a summary might contain words not explicitly present in the original. Research into abstractive methods is an increasingly important and active research area, however due to complexity constraints, research to date has focused primarily on extractive methods. In some application domains, extractive summarization makes more sense. Examples of these include image collection summarization and video summarization.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report