• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
STA220 – Guided Notes 6.3
STA220 – Guided Notes 6.3

... To test hypotheses regarding the population mean assuming the population standard deviation is known, two requirements must be satisfied: 1. A simple random sample is obtained. 2. The population from which the sample is drawn is normally distributed or the sample size is large (n≥30). ...
Samples and Inferential Statistics
Samples and Inferential Statistics

Chapter 10.1
Chapter 10.1

Confidence Interval
Confidence Interval

ix - College Home
ix - College Home

 Chapter 3 Numerically Summarizing Data
 Chapter 3 Numerically Summarizing Data

... Measurement of dispersion is a numerical measure that can quantify the spread of data. In this section, the three numerical measures of dispersion that we will discuss are the range, variance, and standard deviation. In the later section, we will discuss another measure of dispersion called interqua ...
Outline Statistical Methods Importance of sampling distribution
Outline Statistical Methods Importance of sampling distribution

Statistics Guide
Statistics Guide

Handout 6 - TAMU Stat
Handout 6 - TAMU Stat

... Solve for unknown parameter (such as 1). If you have two unknown parameters, you also need to compute the following to solve two unknown parameters with two equations. (iv) calculate E(X2). (v) ...
Kahos Notes 1 File
Kahos Notes 1 File

ca660_data_analysis_1 - DCU School of Computing
ca660_data_analysis_1 - DCU School of Computing

part1 - De Anza College
part1 - De Anza College

Confidence Interval for Population Mean
Confidence Interval for Population Mean

... the sample we calculate a sample mean. Since we know in theory that different samples would provide potentially different sample means, we take our one sample mean and build a margin of error around the sample mean. Then we have a level of confidence that the unknown population mean is in the interv ...
part1 - Professor Mo Geraghty
part1 - Professor Mo Geraghty

... The “box” is the region between the 1st and 3rd quartiles. Possible outliers are more than 1.5 IQR’s from the box (inner fence) Probable outliers are more than 3 IQR’s from the box (outer fence) In the box plot below, the dotted lines represent the “fences” that are 1.5 and 3 IQR’s from the box. See ...
Quartiles Z
Quartiles Z

Day 10 Class Notes
Day 10 Class Notes

Engineering Fundamentals and Problem Solving, 6e
Engineering Fundamentals and Problem Solving, 6e

Interval Estimation
Interval Estimation

σ < = 2.355 = 4.492 - Emily Miller`s ePortfolio
σ < = 2.355 = 4.492 - Emily Miller`s ePortfolio

Sampling distributions and one sample tests
Sampling distributions and one sample tests

chapter 10: introduction to inference - Hatboro
chapter 10: introduction to inference - Hatboro

Review test 3spring
Review test 3spring

Workshop 4. Hypothesis Testing part 1: t
Workshop 4. Hypothesis Testing part 1: t

ch4_variability1
ch4_variability1

... Interquartile and semi-interquartile ranges Standard deviation and variance Standard error of the mean (discussed later in the course) ...
Spreadsheet Projects: Exploring Data
Spreadsheet Projects: Exploring Data

< 1 ... 288 289 290 291 292 293 294 295 296 ... 382 >

Bootstrapping (statistics)



In statistics, bootstrapping can refer to any test or metric that relies on random sampling with replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of bias, variance, confidence intervals, prediction error or some other such measure) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods. Generally, it falls in the broader class of resampling methods.Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by measuring those properties when sampling from an approximating distribution. One standard choice for an approximating distribution is the empirical distribution function of the observed data. In the case where a set of observations can be assumed to be from an independent and identically distributed population, this can be implemented by constructing a number of resamples with replacement, of the observed dataset (and of equal size to the observed dataset).It may also be used for constructing hypothesis tests. It is often used as an alternative to statistical inference based on the assumption of a parametric model when that assumption is in doubt, or where parametric inference is impossible or requires complicated formulas for the calculation of standard errors.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report