• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Einstein and Relativity 0.1 Overview 0.2 Discrepancies With
Einstein and Relativity 0.1 Overview 0.2 Discrepancies With

... The twin paradox, first developed by Einstein, goes as follows. Suppose you have twin astronauts, one Earth-bound and one who travels. The traveller performs a loop that leaves the Earth and then returns. When the twins compare clocks, they see that the travelling clock has lost some time, meaning t ...
doc - High Energy Physics
doc - High Energy Physics

... E. is trapped in a black hole. ...
Chapter 26 – Relativity
Chapter 26 – Relativity

2.1 Inertial Frames of Reference
2.1 Inertial Frames of Reference

... Definition. A frame of reference is a system of spatial coordinates and possibly a temporal coordinate. A frame of reference in which the Law of Inertia holds is an inertial frame or inertial system. An observer at rest (i.e. with zero velocity) in such a system is an inertial observer. Note. The ma ...
JDoranLtalkV2
JDoranLtalkV2

... “I was sitting in a chair in the patent office at Bern when all of a sudden a thought occurred to me: if a person falls freely he will not feel his own weight. This simple thought made a deep impression on me. It impelled me toward a theory of gravitation.” -Albert Einstein ...
JKeehnLtalk
JKeehnLtalk

... “I was sitting in a chair in the patent office at Bern when all of a sudden a thought occurred to me: if a person falls freely he will not feel his own weight. This simple thought made a deep impression on me. It impelled me toward a theory of gravitation.” -Albert Einstein ...
Document
Document

... launches off in a spaceship for a trip to a star 30 light-years away. The ship traveling at a speed 0.99 c reaches the star, turns around and returns to Earth. Since the spaceship is traveling near c, to the Earth twin the trip will take 2x30 years=60 years, whereas for the astronaut twin as calcula ...
QUIZ 9 Mark____
QUIZ 9 Mark____

... direction does the elevator accelerate, and what is the value of this acceleration, if the balance indicates a mass of M'=80kg? (30 p) ...
< 1 2 3

Twin paradox

In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, according to an incorrect naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged more slowly. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey, and so there is no symmetry between the spacetime paths of the two twins. Therefore, the twin paradox is not a paradox in the sense of a logical contradiction.Starting with Paul Langevin in 1911, there have been various explanations of this paradox. These explanations ""can be grouped into those that focus on the effect of different standards of simultaneity in different frames, and those that designate the acceleration [experienced by the travelling twin] as the main reason..."". Max von Laue argued in 1913 that since the traveling twin must be in two separate inertial frames, one on the way out and another on the way back, this frame switch is the reason for the aging difference, not the acceleration per se. Explanations put forth by Albert Einstein and Max Born invoked gravitational time dilation to explain the aging as a direct effect of acceleration.The twin paradox has been verified experimentally by precise measurements of atomic clocks flown in aircraft and satellites. For example, gravitational time dilation and special relativity together have been used to explain the Hafele–Keating experiment. It was also confirmed in particle accelerators by measuring time dilation of circulating particle beams.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report