• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Quantum Field Theory - damtp
Quantum Field Theory - damtp

... At distances shorter than this, there is a high probability that we will detect particleanti-particle pairs swarming around the original particle that we put in. The distance λ is called the Compton wavelength. It is always smaller than the de Broglie wavelength λdB = h/|~p|. If you like, the de Br ...
Calculation of Hawking Radiation as Quantum Mechanical Tunneling
Calculation of Hawking Radiation as Quantum Mechanical Tunneling

... the radiation can also be described as pair production near the horizon followed by quantum mechanical tunneling of one of the particles. The purpose of this thesis is to carry out a detailed calculation of the Hawking radiation from a Schwarzschild black hole, by tunneling of a massless shell throu ...
量子力學
量子力學

... (b) Use the first- and second-order perturbation theory to find the approximate eigenvalues. 30. For a system with a spherically symmetric potential like a hydrogen atom, eigenfunctions are specified by quantum numbers n, l, and m. Find the selection rule for the dipole transition involved in absor ...
MATH10232: EXAMPLE SHEET X
MATH10232: EXAMPLE SHEET X

... (c) A particle is released from rest at the point x = 1, show that the particle oscillates between the two points x = 1 and x = α, where α is to be determined. ...
Massive two-loop Bhabha Scattering --- the - Indico
Massive two-loop Bhabha Scattering --- the - Indico

Chapter 1
Chapter 1

... Physical quantities: Observables and their operators In this lecture we study the relation between dynamical variables in classical and quantum mechanics and show that in the new quantum formalism these must be represented by operators acting on the wave function. We introduce the concept of commuta ...
- Philsci
- Philsci

Quantum Chemistry - Winona State University
Quantum Chemistry - Winona State University

... Can only explain the line spectrum of hydrogen adequately. Can only work for (at least) one electron atoms. Cannot explain multi-lines with each color. Cannot explain relative intensities. ...
Variational principle in the conservation operators deduction
Variational principle in the conservation operators deduction

... Imagine the observer who want to describe the certain isolate system. Conservation laws have to be valid in the case since the isolation. And the mean value of changes of the psi function has to be zero (cause of the relation L   L  ): ...
Quantum Mechanics: Particles in Potentials
Quantum Mechanics: Particles in Potentials

PPT
PPT

PHOTON WAVE MECHANICS: A DE BROGLIE
PHOTON WAVE MECHANICS: A DE BROGLIE

Introduction to Quantum Field Theory
Introduction to Quantum Field Theory

... Quantum field theory (QFT) is a subject which has evolved considerably over the years and continues to do so. From its beginnings in elementary particle physics it has found applications in many other branches of science, in particular condensed matter physics but also as far afield as biology and e ...
Recitation 3 - MIT OpenCourseWare
Recitation 3 - MIT OpenCourseWare

... Going back to the time-independent Schr ̈ dinger equation, if we consider ̂ as an operator acting upon the function ψ, then it follows that E is an eigenvalue of the operator ̂ with eigenfunction ψ. This is analogous to the eigenvalue and eigenvector problems in the vector spaces considered before. ...
Master Class 2002
Master Class 2002

the duality of matter and waves
the duality of matter and waves

Here - TCM - University of Cambridge
Here - TCM - University of Cambridge

... “How does it really work? What machinery is actually producing this thing? Nobody knows any machinery. Nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it.” [Feynman, 1965] ...
introduction to the standard model of particle physics
introduction to the standard model of particle physics

Solutions of the Equations of Motion in Classical and Quantum
Solutions of the Equations of Motion in Classical and Quantum

... In this paper we shall directly compare the time-dependent quantum operators in the Heisenberg picture with the corresponding classical functions-the solutions of the classical equations of motion. In order to make such a direct comparison possible, we introduce the expectation values of quantum ope ...
Document
Document

Slide 1
Slide 1

Document
Document

...  Nobel Prize. 1925 G.N. Lewis proposed the name Photon for quanta of light. 1925 Compton showed quantum (particle) nature of X-rays  Nobel Prize. ...
Einstein Finds Past Events Not Knowable with
Einstein Finds Past Events Not Knowable with

Einstein-Podolsky-Rosen paradox and Bell`s inequalities
Einstein-Podolsky-Rosen paradox and Bell`s inequalities

Harmonic Oscillator Physics
Harmonic Oscillator Physics

< 1 ... 122 123 124 125 126 127 128 129 130 ... 156 >

Propagator

In quantum mechanics and quantum field theory, the propagator gives the probability amplitude for a particle to travel from one place to another in a given time, or to travel with a certain energy and momentum. In Feynman diagrams, which calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the diagram. They also can be viewed as the inverse of the wave operator appropriate to the particle, and are therefore often called Green's functions.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report