Authors:Qing Jie, Rongwei Hu, Emil Bozin, A
... spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions ...
... spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions ...
Quantum phenomena in gravitational field - AEgIS
... 2. Quantum states of ultracold antihydrogen above material surface (Alexei Voronin) In the context of the general relativity theory, universality of a free fall is often referred to as the Weak Equivalence Principle (WEP). WEP is being tested with increasing sensitivity for macroscopic bodies. The b ...
... 2. Quantum states of ultracold antihydrogen above material surface (Alexei Voronin) In the context of the general relativity theory, universality of a free fall is often referred to as the Weak Equivalence Principle (WEP). WEP is being tested with increasing sensitivity for macroscopic bodies. The b ...
Review Lecture: March 15, 2013
... field: k z 2 nz / L for any integral nz . The energy gy of motion pperpendicular p to the field,, which would be 2 (k x2 k y2 ) / 2m if no field were present, is quantized in steps of c (c eH / mc). ) This is orbit quantization. quantization Dai/PHYS 342/555 Spring 2013 ...
... field: k z 2 nz / L for any integral nz . The energy gy of motion pperpendicular p to the field,, which would be 2 (k x2 k y2 ) / 2m if no field were present, is quantized in steps of c (c eH / mc). ) This is orbit quantization. quantization Dai/PHYS 342/555 Spring 2013 ...
Quantum Computers Can Search Rapidly by Using Almost
... As a result, a serious problem in implementing quantum mechanical computers is their extreme sensitivity to perturbations. This paper synthesizes algorithms in terms of unitary matrices— as shown in section 3 this framework can always be specialized to a quantum computer based on qubits; however, it ...
... As a result, a serious problem in implementing quantum mechanical computers is their extreme sensitivity to perturbations. This paper synthesizes algorithms in terms of unitary matrices— as shown in section 3 this framework can always be specialized to a quantum computer based on qubits; however, it ...
Quantum HPC Sweden
... ▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be implemented using a short circuit, i.e. it does not depend on lots of data ▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013) ...
... ▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be implemented using a short circuit, i.e. it does not depend on lots of data ▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013) ...
Cooling and Trapping Neutral Atoms
... Bose-Einstein condensates in optical lattices are an ideal system for studying strongly-correlated manybody systems. The Mott Insulator transition is a paradigm of condensed matter physics and describes how electron correlations can lead to insulating behavior even for partially filled conduction ba ...
... Bose-Einstein condensates in optical lattices are an ideal system for studying strongly-correlated manybody systems. The Mott Insulator transition is a paradigm of condensed matter physics and describes how electron correlations can lead to insulating behavior even for partially filled conduction ba ...
P202 Lecture 2
... experience have an internal degree of freedom known as intrinsic spin, which comes in integral multiples of hbar/2 (i.e. h/4p, so it has dimensions of angular momentum). The value of this spin has remarkably powerful consequences for the behavior of many-body systems: FERMIONS (odd-integer multiple ...
... experience have an internal degree of freedom known as intrinsic spin, which comes in integral multiples of hbar/2 (i.e. h/4p, so it has dimensions of angular momentum). The value of this spin has remarkably powerful consequences for the behavior of many-body systems: FERMIONS (odd-integer multiple ...
chapter 5
... U(x) is the potential energy function of the Force 1. left hand side (LHS) of SE is first evaluated for Ψ(x,0), i.e. t = 0, as it is not dependent on time, i.e. we make partial derivations and add the influence of the potential energy function on Ψ(x,0) ...
... U(x) is the potential energy function of the Force 1. left hand side (LHS) of SE is first evaluated for Ψ(x,0), i.e. t = 0, as it is not dependent on time, i.e. we make partial derivations and add the influence of the potential energy function on Ψ(x,0) ...
Chem 101 Test #1 review questions. Please don`t look at the
... Well, the charge of X must be +3 and the charge of Y must be –3 so that the formula would be XY. Using the atomic mass numbers as a close approximation of the mass, we have: 139+209 = 348 g/mol 5) Write balanced equations for the following reactions: a) phosphoric acid with sodium bicarbonate: b) am ...
... Well, the charge of X must be +3 and the charge of Y must be –3 so that the formula would be XY. Using the atomic mass numbers as a close approximation of the mass, we have: 139+209 = 348 g/mol 5) Write balanced equations for the following reactions: a) phosphoric acid with sodium bicarbonate: b) am ...
Coriolis force, geometric phase, and spin
... vector k of a charge carrier leads to non-trivial gauge potentials that appear in the reciprocal momentum space9. The associated covariant gauge field enters the equation of motion for the group velocity of a wave-packet and may affect the coherent transport properties of holes in valence subbands10 ...
... vector k of a charge carrier leads to non-trivial gauge potentials that appear in the reciprocal momentum space9. The associated covariant gauge field enters the equation of motion for the group velocity of a wave-packet and may affect the coherent transport properties of holes in valence subbands10 ...
Quantum error correcting codes and Weyl commutation relations
... determines a nondegenerate symmetric bicharacter and W ((a1 , b1 ), (a2 , b2 )) = W (a1 , a2 ) ⊗ W (b1 , b2 ), (ai , bi ) ∈ A × B, i = 1, 2, determines the Weyl operators for A × B where L2 (A × B) is naturally identified with L2 (A) ⊗ L2 (B). We shall use all these basic properties of the Weyl oper ...
... determines a nondegenerate symmetric bicharacter and W ((a1 , b1 ), (a2 , b2 )) = W (a1 , a2 ) ⊗ W (b1 , b2 ), (ai , bi ) ∈ A × B, i = 1, 2, determines the Weyl operators for A × B where L2 (A × B) is naturally identified with L2 (A) ⊗ L2 (B). We shall use all these basic properties of the Weyl oper ...
Hydrogen atom
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the elemental (baryonic) mass of the universe.In everyday life on Earth, isolated hydrogen atoms (usually called ""atomic hydrogen"" or, more precisely, ""monatomic hydrogen"") are extremely rare. Instead, hydrogen tends to combine with other atoms in compounds, or with itself to form ordinary (diatomic) hydrogen gas, H2. ""Atomic hydrogen"" and ""hydrogen atom"" in ordinary English use have overlapping, yet distinct, meanings. For example, a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated hydrogen atoms).