Download Lorma Colleges City of San Fernando (LU) College of Arts and

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Force wikipedia , lookup

Angular momentum operator wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

N-body problem wikipedia , lookup

Momentum wikipedia , lookup

Kinematics wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Inertia wikipedia , lookup

Hunting oscillation wikipedia , lookup

Work (physics) wikipedia , lookup

Centripetal force wikipedia , lookup

Classical mechanics wikipedia , lookup

Rigid body dynamics wikipedia , lookup

Classical central-force problem wikipedia , lookup

T-symmetry wikipedia , lookup

Equations of motion wikipedia , lookup

Renormalization group wikipedia , lookup

Max Born wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Transcript
Lorma Colleges
City of San Fernando (LU)
College of Arts and Sciences
Syllabus in Colphy1 – College Physics 1 (Lecture)
1st Semester, School Year 2012-2013
Submitted by Engr. Bernardo F. Vallo
Noted and checked by Josephine E. Libatique, MALT
Approved by Diadema B. La Madrid, Ph.D.
VISION of LORMA COLLEGES:
We envision Lorma Colleges as an excellent Christian Educational Institution with an international scope and reputation whose graduates reflect Christian values,
professional competence and leadership skills relevant to national development.
MISSION of LORMA COLLEGES:
To provide quality and Christian education relevant to current and future needs, developing the total person and reaching students in the Philippines and other countries
through the use of modern technology.
VISION of COLLEGE ARTS AND SCIENCES: We envision the College of Arts and Sciences as a center of scientific and technological research acting as a catalyst in producing quality
graduates equipped with Christian values, knowledge and abilities utilizing a curriculum relevant to their field of specialization.
MISSION of COLLEGE OFARTS AND SCIENCES: To provide an educational training using technology that would cater to the needs of the students recognizing individual differences,
cultural backgrounds, values, practices and beliefs that would make them productive and successful in all undertakings as to become essential in the society where they belong.
OBJECTIVES of COLLEGE OF ARTS AND SCIENCES:
1. To provide for a general education that will assist each individual in the peculiar ecology of his own society. In order for an individual to attain his potentials as a human being and
to enhance the range and quality of individual and group participation, which is the basic foundation of his development, making him a productive and versatile citizen.
2. To train the nation’s manpower in the middle level skills required for national development.
3. To develop the professions that will provide leadership for the nation in the advancement of knowledge and for improving the quality of human life.
4. To respond effectively to the changing needs and conditions of the nation through a system of educational planning and evaluation.
5. To make the individual conscious of the Almighty God and His power and authority over the lives of men and nations.
Syllabus in Colphy1–College Physics 1 (lecture)
1
Course Prerequisite: Algebra and Trigonometry
Course Description: College Physics 1 (lecture) is a 2-unit course focuses on mechanics and dynamics. It introduces the students to the basic ideas in physics, such as conservation of
energy and conservation of momentum as well as Newton’s Laws. A substantial part of the course is devoted to teaching students how to solve problems in a
structured way and helping students realize that most problems in science and engineering can be explained in terms of the logic of mathematics and physics. The
course provides a stepping-stone to further studies in more advanced courses both in physics and related disciplines.
Course Objectives: At the end of the course with at least 95% level of performance, the students are expected to:
1. use dimensional analysis in solving problems.
2. solve problems specific to physics.
3. explain and interpret selected physical phenomena, laws and theories.
4. communicate in real life situations using the language of Physics
5. apply the different physical concepts to life.
6. represent through illustrations some situational problems in physics.
7. show values like dependability, cooperation, accuracy, teamwork through group activities.
8. Know that real world problems are often complex and have no exact solutions.
9. Know that physics is able to explain many of the natural phenomena.
10. Know that an understanding of the laws of physics is needed in all scientific disciplines.
Course Requirements: At the end of this course, the students should be able to accomplish the following requirements:
1. Pass the major examinations (Prelims, Midterms and Finals).
2. Participate in classroom activities such as recitations, seat works, board works, assignments, and quizzes.
3. Attend the on-ground and online classes regularly.
Note: Every other week will be on-ground discussion specifically on problem solving.
Course Textbook:
References:








Jones, Edwin, Richard Childers. Contemporary College Physics 3rd Edition Boston 1999 WCB McGraw-Hill
Young and Freedman, University Physics, 12th edition, Pearson Addison Wesley, 2008.
Del Rosario, Asuncion M. College Physics, revised edition, 2005.
Floresta, Jose C. and Racquel D. Quiambao .Physics Worktext..Manila: C & E Publishing Inc.2007.
Physics, 6th Edition, by D.C. Giancoli, Prentice-Hall Publishing Co., 2005.
Physics for Scientists & Engineers, 5th Edition, by Paul A. Tipler & Gene Mosca, W.H. Freeman & Co., 2004
Physics for Scientists & Engineers, 3rd Edition, by Fishbane, Gasiorowicz & Thornton, Pearson/Prentice-Hall, 2005
Physics for Scientists & Engineers, by Randall D. Knight, Pearson/Addison Wesley, 2004.
Schaum’s Outline Series. Theories & Problems of College Physics SI ( Metric ) Edition
Lorma Colleges Grading System:
*For every grading period - Prelim, Midterm, Final: (Class standing rating multiply by 2 plus Exam rating) divided by 3.
*For the Final Rating – grade at the end of the course: 30% Prelim Grade + 30% Midterm Grade + 40% Final Grade.
Syllabus in Colphy1–College Physics 1 (lecture)
2
Week 1
Week 2-3
Hours: 6
Week 4 -5
Hours: 6
OBJECTIVES
METHODOLOGY/ STRATEGY/
SESSION TOPICS
TECHNIQUES
(With References)
Creative introduction/presentation/orientation of the course (that includes the instructor, the students, the syllabus).
I. The Basic Tools of Physics
At the end of the session, students would
1. Lecture(post in lorma.edu20.org)
a) Units of Measurement
be able to :
2. Discussion (on-ground / online)
b) Dimensional Analysis
1. Describe the System International (SI)
3. Drill Exercises (post in
c) Significant Figures
system of units.
lorma.edu20.org)
d) Order-of-Magnitude Calculations
2. Describe the concepts of mass, length
4. Recitation
e) Coordinate Systems
and time
Note: Every other will be week onf) Vectors and Scalars
3. Use the common mathematical
ground discussion specifically on
g) Components of a Vector
notation utilized in physics
problem solving.
calculations
Contemporary College Physics by Jones and
4. Describe the concept of frames of
Childers
reference.
Chapter 1 pp. 1-24
5. Use basic trigonometry in physics
calculations.
II. Motion in One and Two Dimensions
a) Average Velocity; Instantaneous Velocity
b) Acceleration
c) One-Dimensional Motion with Constant
Acceleration
d) Freely Falling Bodies
e) Velocity and Acceleration in Two
Dimensions
f) Projectile Motion
Contemporary College Physics by Jones and
Childers
Chapter 1 pp. 25-95
Syllabus in Colphy1–College Physics 1 (lecture)
At the end of the session, students would
be able to :
1. State the definitions of displacement,
velocity and acceleration using
calculus.
2. State and use the equations of
kinematics for motion with constant
acceleration.
3. Describe the nature of free-fall motion.
4. State the definitions and properties of
vectors and scalars.
5. Solve physics problems using the
techniques for resolution and addition
of vectors, including the component
method, and the law of sine and the
law of cosine.
6. Describe projectile motion.
7. Describe the relative nature of velocity
measurement.
8. Describe the distinction between polar
1. Lecture(post in lorma.edu20.org)
2. Discussion (on-ground / online)
3. Drill Exercises (post in
lorma.edu20.org)
4. Recitation
Note: Every other week will be onground discussion specifically on
problem solving.
EVALUATION
Quiz: Problem
Solving
1. A baby weighed
3.2 kg at birth, what
was his weight in
pounds?
2. If the human
heart beats are at an
average of 50
beats/min
approximately how
many beats/min have
been made by the
person’s 70th
birthday.
Quiz.
1. What is the
displacement of a
car that moves 3 km
south then 5 km
west?
2. What is the x
component of a 50
N force that is
30degrees with
respect to y?
3
vectors and axial vectors.
Week 6
Week 7-9
Hours: 9
III. The Laws of Motion
a) Force
b) Newton’s First Law
c) Newton’s Second Law
d) Newton’s Third Law
e) Applications of Newton’s Laws
f) Friction
Preliminary Examination (on-ground)
At the end of the session, students would
1.
be able to :
2.
1. Describe the concept of force.
3.
2. State Newton's three laws of motion.
3. Describe the characters of friction, air
4.
resistance, tensions and normal
5.
forces.
Contemporary College Physics by Jones and
Childers
Chapter 1 pp. 96-144
Week 1011
Hours: 9
IV. Objects in Equilibrium
a) The First Condition for Equilibrium
b) Problem-solving Techniques
c) Torque
d) The Second Condition for Equilibrium
e) The Center of Gravity
f) Examples of Objects in Equilibrium
Contemporary College Physics by Jones and
Childers
Chapter 1 pp. 96-144
Week 12
Week 1315
V. Work and Energy
a) Work and Kinetic Energy
Syllabus in Colphy1–College Physics 1 (lecture)
At the end of the session, students would
be able to :
1. State the definition of torque.
2. State the definition of the center of
gravity of an object.
3. State the rotational version of
Newton's second law of motion.
4. State the definitions of rotational
kinetic energy and angular
momentum.
5. State the law of conservation of
angular momentum.
6. Describe the characteristics of solids,
liquids, gases and plasmas.
7. State the definitions of stress and
strain in solids.
8. State the definitions of density and
pressure.
9. Describe buoyant forces.
10. State Archimedes' Principle and
Bernoulli's Principle
Lecture(post in lorma.edu20.org)
Discussion (on-ground / online)
Drill Exercises (post in
lorma.edu20.org)
Recitation
Research
Note: Every other week will be onground discussion specifically on
problem solving.
Quiz:
1. What is the
force acting on an
object with 5 kg
mass and
accelerating at
1m/s2?
2. State the three
Newton’s Laws and
explain each.
1. Lecture(post in lorma.edu20.org)
2. Discussion (on-ground / online)
3. Drill Exercises (post in
lorma.edu20.org)
4. Recitation
5. Research
Note: Every other week will be onground discussion specifically on
problem solving.
Quiz:
1. What is the
gravitational pull at
the surface of Mars?
2. What is the
attraction due to
gravity between the
earth and the moon?
Mid-term Examination (on-ground)
At the end of the session, students would
1. Lecture(post in lorma.edu20.org)
be able to :
2. Discussion (on-ground / online)
Quiz
A father carries a
4
Hours: 6
b) Gravitational Kinetic Energy
c) Conservative and Non-conservative Forces
d) Conservation of Mechanical Energy
e) Non-conservative Forces and the WorkEnergy Theorem
f) Power
g) Work Done by Varying Forces
1.
State the definitions of work, kinetic
energy and potential energy.
State the distinction between
conservative and dissipative forces.
State the law of conservation of
energy.
State the definition of power.
3. Drill Exercises (post in
lorma.edu20.org)
4. Recitation
5. Research
Note: Every other week will be onground discussion specifically on
problem solving.
child on his shoulder
while watching a
basketball game.
Based on the
scientific definition of
work on his hand.
Try to reconcile this
fact that the father
gets tired after
holding the child.
At the end of the session, students would
be able to :
1. Lecture(post in lorma.edu20.org)
2. Discussion (on-ground / online)
3. Drill Exercises (post in
lorma.edu20.org)
4. Recitation
5. Research
Note: Every other week will be onground discussion specifically on
problem solving.
Quiz:
1. What is the
impulse and
momentum of a 50
kg body moving at a
speed of 1kph?
2. How is
momentum
conserved in one
dimensional
collisions?
2.
3.
4.
Contemporary College Physics by Jones and
Childers
Chapter 1 pp. 176-209
Week 1617
Hours: 9
VI. Momentum and Collisions
a) Momentum and Impulse
b) Conservation of Momentum
c) Elastic and Inelastic Collisions
d) Glancing Collisions
e) Center of Mass
Contemporary College Physics by Jones and
Childers
Chapter 1 pp. 210-262
Week 18
Syllabus in Colphy1–College Physics 1 (lecture)
1. State the definitions of impulse and
linear momentum.
2. State the law of conservation of linear
momentum.
3. Define angular velocity and angular
acceleration.
4. State the equations of kinematics of
rotational motion with constant angular
acceleration.
5. State the definitions of centripetal
force and centripetal acceleration.
6. State Kepler's rules of planetary
motion.
Final Examination (on ground)
5