Download Document

Document related concepts

Microprocessor wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Transistor wikipedia , lookup

Electronic musical instrument wikipedia , lookup

Semiconductor device wikipedia , lookup

Transmission tower wikipedia , lookup

Opto-isolator wikipedia , lookup

Electronic engineering wikipedia , lookup

Flexible electronics wikipedia , lookup

Digital electronics wikipedia , lookup

CMOS wikipedia , lookup

Transcript
Universidade Federal de Santa Catarina
Centro Tecnológico
Computer Science & Electrical Engineering
Digital Integrated Circuits
INE 5442 / EEL 7312
Lectures 33 to 36
Combinational Circuits in CMOS
Prof. José Luís Güntzel
[email protected]
Combinational Circuits in CMOS
Agenda
•
•
Complementary CMOS
Pass-Transistor Logic
INE 5442 / EEL 7312
Digital Integrated Circuits
2
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Combinational vs. Sequential Logic
in0
in1
...
ink
Combinational
Logic
in0
in1
...
inm
out0
out1
...
outj
Output values depend only on
the current input values (no
feedback, no storage element).
Combinational
Logic
out0
out1
...
outn
State
Output values depend on the current
input values and on previous input
values (feedback with/without storage
element).
INE 5442 / EEL 7312
Digital Integrated Circuits
3
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Logic Families in CMOS
• Static CMOS Logic
– Complementary CMOS
– Ratioed Logic
– Pass-Transistor Logic
• Dynamic CMOS Logic
INE 5442 / EEL 7312
Digital Integrated Circuits
4
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Metrics for Choosing a Gate Design/Family
• Area in silicon (related to number of transistors)
• Speed (propagation delay)
• Energy consumption/Power dissipation
• Robustness to noise
• Reliability
• Manufacturability
“Depending on the application, the emphasis will be on different metrics.”
(Rabaey; Chandrakasan; Nikolic, 2005)
INE 5442 / EEL 7312
Digital Integrated Circuits
5
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Static CMOS Logic
Features:
• Robustness (low sensitivity to noise).
• Good performance.
• Low power consumption (no static consumption, except for
leakage currents).
• Easy to design (good for novice designers…)
INE 5442 / EEL 7312
Digital Integrated Circuits
6
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: the inverter
Logic-level symbol
Transistor schematics
in
Vdd
out
Truth-table
in
out
in out
INE 5442 / EEL 7312
Digital Integrated Circuits
0
1
1
0
7
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: mask layout for an inverter
N channel
P channel
Vdd
P
N
P
Gnd
N
P well
N Substrate
P-implant
INE 5442 / EEL 7312
Digital Integrated Circuits
N-implant
8
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: the inverter
Vdd
Steady-state operation
in=0
out=1
CL= Vdd
in out
0
1
1
0
Vdd
in=1
(in=Vdd)
out=0
CL= 0 V
• Transistors seemed as ideal electronic switches
• Capacitance represents the total charge at the gate´s output
INE 5442 / EEL 7312
Digital Integrated Circuits
9
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic
Vdd
in1
in2
in3
pull-up
network
PMOS only
makes f(in1, in2, in3) = 1
out = f(in1, in2, in3)
in1
in2
in3
pull-down
network
NMOS only
makes f(in1, in2, in3) = 0
GND
• Pull-up and pull-down networks are mutually exclusive transistor associations
(dual)
• In steady state, there is always a path to either Vdd or GND! (In steady state, the
output is always a low-impedance node.)
INE 5442 / EEL 7312
Digital Integrated Circuits
10
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Static CMOS Logic
Discharging the output capacitance…
output
Vdd  0
output
D
S
CL
Vdd
VGS
Vdd  |VTp|
CL
S
D
Charging the output capacitance…
Vdd
VGS
D
Vdd
S
Vdd
S
output
0  Vdd - VTn
CL
INE 5442 / EEL 7312
Digital Integrated Circuits
D
output
0  Vdd
CL
11
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
NMOS Series/Parallel Associations
X
X
control
variables
control
variables
A
A
B
B
Y
X=Y
Y
if A=1 AND B=1
X=Y
if A=1 OR B=1
Problem: NMOS transistors pass a weak “1” (but a strong “0”)
INE 5442 / EEL 7312
Digital Integrated Circuits
12
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
PMOS Series/Parallel Associations
X
control
variables
X
A
A
B
Y
X=Y
control
variables
B
Y
if A=0 AND B=0
X=Y
if A=0 OR B=0
Problem: PMOS transistors pass a weak “0” (but a strong “1”)
INE 5442 / EEL 7312
Digital Integrated Circuits
13
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic
• Only negative logic functions
are implemented (e.g.: inverter,
NAND, NOR, XNOR…)
• Design procedure:
– use the “0” of the gate function
to design the pull-down
network
– Apply De Morgan´s theorem to
find the pull-up network.
Vdd
in1
in2
in3
PMOS only;
makes f(in1, in2, in3) = 1
out = f(in1, in2, in3)
in1
in2
in3
• An n-input logic gate requires
2n transistors.
INE 5442 / EEL 7312
Digital Integrated Circuits
pull-up
network
pull-down
network
NMOS only;
makes f(in1, in2, in3) = 0
GND
14
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nand
Logic-level symbol
Transistor schematics
Vdd
A
B
S
Truth-table
A B
S
0
0
1
0
1
1
1
0
1
1
1
0
INE 5442 / EEL 7312
Digital Integrated Circuits
B
A
S
A
B
15
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nand mask layout
VDD
Vdd
B
A
A
S
B
A
Out
B
GND
INE 5442 / EEL 7312
Digital Integrated Circuits
16
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nand
Vdd
Steady state behavior:
4 possible input combinations
Vdd
B=0
A=0
A=0
S=1
CL=Vdd
B=0
S
0
0
1
0
1
1
1
0
1
1
1
0
Vdd
B=0
A=1
CL=Vdd
B=1
Vdd
A=1
S=1
A=1
B=1
S=0
A=1
CL=Vdd
B=0
INE 5442 / EEL 7312
Digital Integrated Circuits
S=1
A=0
A=0
A B
B=1
CL=0 V
B=1
17
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nand
Delay characterization through electric-level simulation (e.g., Spice)
Evaluates the individual contribution of each input
(the others are kept at their non-controlling values)
input
tpLH
(ps)
tpHL
(ps)
A
A
B
S
B
A
B
S
tpLH(A)
INE 5442 / EEL 7312
Digital Integrated Circuits
tpLH(B)
tpHL(A)
18
tpHL(B)
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nand
VDD
Vdd
B
A
A
S
B
A
Out
B
GND
INE 5442 / EEL 7312
Digital Integrated Circuits
19
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Logic: 2-input Nor
Logic-level symbol
Transistor schematics
Vdd
A
B
S
B
Truth-table
A B
S
0
0
1
0
1
0
1
0
0
1
1
0
INE 5442 / EEL 7312
Digital Integrated Circuits
A
S
A
20
B
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Building Complementary CMOS Complex Gates
Example:
S = A+B·C
1. If the logic gate equation is not negated,
imagine it as it were. At the end, an extra
inverter will have to be added .
(Alternatively, apply De Morgan´s
theorem…)
2. Take the non-inverting equation of the
logic gate to design the pull-down
network
INE 5442 / EEL 7312
Digital Integrated Circuits
21
S
B
A
C
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Building Complementary CMOS Complex Gates
Example:
S = A+B·C
Vdd
B
3. Design the pull-up network by finding
the dual of the pull-down network,
already designed:
1. Each series NMOS association gives rise
to a parallel PMOS association
2. Each parallel NMOS association gives
rise to a series PMOS association
C
A
S
B
A
C
INE 5442 / EEL 7312
Digital Integrated Circuits
22
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Properties of Complementary CMOS Gates
• Full rail-to-rail swing; high noise margins (VOH=Vdd ,
VOL=GND)
• Logic levels not dependent upon the relative device sizes;
ratioless
• Always a path to Vdd or Gnd in steady state; low output
impedance
• Extremely high input resistance; nearly zero steady-state
input current
• No direct path steady state between power and ground; no
static power dissipation
• Propagation delay function of load capacitance and
resistance of transistors
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
23
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Switch Delay Models for Complementary Gates
NAND2
Rp
A
INV
Rp
Rp
B
Rn
Rp
B
A
Rp
CL
B
Rn
NOR2
Rn
Cint
A
CL
A
Cint
A
Rn
Rn
A
B
CL
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
24
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Delay Depends on the Input Pattern
Rp
A
Rp
B
Rn
– both inputs go low
CL
• delay is 0.69 Rp/2 CL
– one input goes low
B
Rn
• Delay is dependent on the
pattern of inputs
• Low to high transition
• delay is 0.69 Rp CL
Cint
A
• High to low transition
– both inputs go high
• delay is 0.69 2Rn CL
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
25
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Delay Depends on the Input Pattern
Sized for tpLH =~ tpHL
Voltage [V]
3
NMOS = 0.5m/0.25 m
PMOS = 0.75m/0.25 m
CL = 100 fF
A=B=10
2,5
Entradas
Atraso (ps)
2
A=B=01
69 
A=1, B=01
50 
A= 01, B=1
62 
A=B=10
35 
A=1, B=10
57 
A= 10, B=1
76 
A=1 0, B=1
1,5
1
A=1, B=10
0,5
0
-0,5
0
100
200
300
time [ps]
INE 5442 / EEL 7312
Digital Integrated Circuits
400
Source: Rabaey; Chandrakasan; Nikolic, 2005
26
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Vdd
Delay Depends on the Input Pattern
Sized for tpLH =~ tpHL
NMOS = 0.5m/0.25 m
PMOS = 0.75m/0.25 m
CL = 100 fF
A=1
S=0
B=1
3
A=B=10
B=1
Cint=0 V
CL=0 V
A=1
2,5
Voltage [V]
2
Vdd
A=1 0, B=1
1,5
A=0
1
S=1
A=1, B=10
0,5
B=1
0
-0,5
B=1
Vdd-VTn
CL=Vdd
A=0
0
100
200
300
time [ps]
INE 5442 / EEL 7312
Digital Integrated Circuits
400
Source: Rabaey; Chandrakasan; Nikolic, 2005
27
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
The “Body Effect”
Vdd
• The VT of the two NMOS
transistors are calculate by:
B
A
VTn2 = Vtn0 +  (( 2f + Vint)0.5 – (2f)0.5)
S
B
M2
int
A
M1
VTn1 = Vtn0
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
28
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Transistor Sizing
R5
Considering intra-cell capacitances
A
R6
B
R7
C
D
R4
Distributed RC model (“Elmore Delay”)
A
tpHL = 0,69  (R1 C1+ (R1+R2)  C2 +
R3
+ (R1+R2+R3)  C3 + (R1+R2+R3+R4)  CL)
R8
CL
C3
B
If R1=R2=R3=R4 then:
R2
tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)
C
R1
C2
C1
D
INE 5442 / EEL 7312
Digital Integrated Circuits
29
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Propagation Delay as a Function of Fan-In
Propagation delay of CMOS NAND gate
quadratic
1250
tp (ps)
1000
tpHL
750
tp
500
tpL
250
linear
H
0
2
4
6
8
10
12
14
16
fanin
Gates with more than 4 inputs should be avoided…
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
30
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Propagation Delay as a Function of Fan-Out
tpNOR2
tpNAND2
tpINV
tp (psec)
2
All gates
have the
same drive
current.
Slope is a
function of
“driving
strength”
4
6
8
10
12
14
16
eff. fan-out
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
31
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Propagation Delay as a Function of Fan-Out
• Fan-in: quadratic due to increasing resistance and
capacitance
• Fan-out: each additional fan-out gate adds two gate
capacitances to CL
tp = a1FI + a2FI2 + a3FO
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
32
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Design Techniques for Static CMOS Gates
• Transistor sizing
– Desde que a capacitância de saída domine
• Progressive sizing
InN
RC distribuído
CL
MN
In3
M3
C3
In2
M2
C2
In1
M1
C1
WM1 > WM2 > WM3 > … > WMN
(o trans. mais próximo da saída
tema a menor resistência de canal.)
Pode reduzir o atraso da porta
em até 20% (segundo Rabaey)
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
33
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Design Techniques for Static CMOS Gates
Transistor ordering
Critical path
Critical path
In3 1 M3
In2 1 M2
In1
M1
01
CL
C2
01
charged
In1
charged
C1 charged
CL charged
M3
In2 1 M2
C2
charged
In3 1 M1
C1
charged
O Atraso é determinado pelo
tempo para descarregar CL
O Atraso é determinado pelo
tempo para descarregar CL, C1
e C2
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
34
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Design Techniques for Static CMOS Gates
• Explorando a Decomposição Lógica
F = ABCDEFGH
Elevando fanin (evitar)
Lógica de 2 níveis em CMOS
Faninlimitado a 2, fanout unitário
INE 5442 / EEL 7312
Digital Integrated Circuits
Source: Rabaey; Chandrakasan; Nikolic, 2005
35
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Design Techniques for Static CMOS Gates
• Isolamento de carga elevada usando buffer
CL
CL
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
36
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Cell Design
• Standard Cells
– General purpose logic
– Can be synthesized
– Same height, varying width
• Datapath Cells
– For regular, structured designs (arithmetic)
– Includes some wiring in the cell
– Fixed height and width
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
37
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Standard Cell Layout Methodology – 1980s
Routing
channel
VDD
signals
GND
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
38
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Standard Cell Layout Methodology – 1990s
Mirrored Cell
No Routing
channels
VDD
VDD
M2
M3
GND
Mirrored Cell
GND
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
39
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Standard Cells
N Well
VDD
Cell height 12 metal tracks
Metal track is approx. 3 + 3
Pitch =
repetitive distance between objects
Cell height is “12 pitch”
2
In
Cell boundary
Out
GND
Rails ~10
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
40
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Standard Cells
With minimal
diffusion
routing
VDD
With silicided
diffusion
VDD
VDD
M2
In
Out
In
Out
In
Out
M1
GND
GND
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
41
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Standard Cells
2-input NAND gate
VDD
VDD
B
A
B
Out
A
GND
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
42
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Stick Diagrams
Contains no dimensions
Represents relative positions of transistors
VDD
VDD
Inverter
NAND2
Out
Out
In
GND
GND
A B
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
43
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Stick Diagrams
Logic Graph
A
j
X
C
C
B
i
A
i
X
X = C • (A + B)
C
PUN
B
VDD
j
B
GND
A
B
C
A
PDN
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
44
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Two Versions of C • (A + B)
A
C
B
A
B
C
VDD
VDD
X
X
GND
GND
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
45
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Consistent Euler Path
X
C
i
X
B
VDD
j
GND
A
A B C
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
46
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
OAI22 Logic Graph
A
C
B
D
X
D
D
A
B
C
VDD
X
X = (A+B)•(C+D)
C
PUN
B
A
B
C
D
A
GND
PDN
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
47
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Multi-Fingered Transistors
One finger
Two fingers (folded)
Less diffusion capacitance
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
48
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Pass Transistor Logic
Exemplo 1: uma função arbitrária (com 4 vars. de controle)
A’
buffer
A B
E1
saída
B’
E2
A
B
saída
0
0
E1’
0
1
E1’
1
0
E1’
1
1
E2’
Saída = ABE2’+A’E1’+B’E1’
• N transistores
• Sem consumo estático
INE 5442 / EEL 7312
Digital Integrated Circuits
49
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
O Comportamento do Transistor de Passagem
3.0
In
1.5m/0.25m
VDD
x
0.5m/0.25m
Out
Tensão [V]
In
Out
2.0
x
1.0
0.5m/0.25m
0.0
0
0.5
1
1.5
2
Tempo [ns]
•~ Vx não consegue atingir Vdd, mas Vdd -VTn(Vx) (efeito de corpo)
• Tensão na entrada do inversor não é suficiente para desligar o transistor
PMOS
• Mensagem: não cascatear transistores de passagem, conectando-os a gates
de outras estruturas similares.
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
50
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
NMOS-only Switch
C = 2.5V
C = 2.5 V
M2
A = 2.5 V
A = 2.5 V
B
Mn
B
M1
CL
VB does not pull up to 2.5V, but 2.5V - VTN
Threshold voltage loss causes
static power consumption
NMOS has higher threshold than PMOS (body effect)
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
51
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
NMOS Only Logic:
Level Restoring Transistor
VDD
VDD
Level Restorer
Mr
B
A
Mn
M2
X
Out
M1
• Advantage: Full Swing
• Restorer adds capacitance, takes away pull down current at X
Source: Rabaey; Chandrakasan; Nikolic, 2005
• Ratio problem
INE 5442 / EEL 7312
Digital Integrated Circuits
52
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Restorer Sizing
Voltage [V]
3.0
2.0
•Upper limit on restorer size
•Pass-transistor pull-down
can have several transistors in
stack
W/Lr =1.75/0.25
W/L r =1.50/0.25
1.0
W/Lr =1.0/0.25
0.0
0
100
200
W/L r =1.25/0.25
300
Time [ps]
400
500
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
53
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Solution 2: Single Transistor Pass Gate with VT=0
VDD
VDD
0V
2.5V
VDD
Out
0V
2.5V
WATCH OUT FOR LEAKAGE CURRENTS
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
54
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Complementary Pass Transistor Logic
A
A
B
B
Pass-Transistor
F
Network
(a)
A
A
B
B
B
Inverse
Pass-Transistor
Network
B
B
A
F
B
B
A
A
B
F=AB
A
B
F=A+B
F=AB
AND/NAND
A
F=AÝ
(b)
A
A
B
B
F=A+B
B
A
F=AÝ
EXOR/NEXOR
OR/NOR
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
55
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Solution
3: Transmission Gate
C
C
A
A
B
B
C
C
C = 2.5 V
A = 2.5 V
B
CL
C=0V
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
56
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Resistance of Transmission Gate
30
2.5 V
Resistance, ohms
Rn
20
Rp
2.5 V
Rn
Vou t
Rp
10
0V
Rn || Rp
0
0.0
1.0
2.0
Vou t , V
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
57
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Pass-Transistor Based Multiplexer
S
S
S
S
VDD
S
A
VDD
M2
F
S
M1
B
S
GND
In1
In2
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
58
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Transmission Gate XOR
B
B
M2
A
A
F
M1
M3/M4
B
B
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
59
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Delay in Transmission Gate Networks
2.5
2.5
V1
In
2.5
Vi
Vi-1
C
0
2.5
C
0
Vn-1
Vi+1
C
0
Vn
C
C
0
(a)
Req
Req
V1
In
Req
Vi
C
Vn-1
Vi+1
C
C
Req
Vn
C
C
(b)
m
Req
Req
Req
Req
Req
Req
In
C
CC
C
C
CC
C
(c)
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
60
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Delay Optimization
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
61
Lectures 33 to 36
Prof. Güntzel
Combinational Circuits in CMOS
Transmission GatePFull Adder
VDD
VDD
Ci
A
P
A
A
P
B
VDD
Ci
A
S Sum Generation
Ci
P
B
VDD
A
P
P
Ci
Co Carry Generation
Ci
A
P
Setup
Similar delays for sum and carry
Source: Rabaey; Chandrakasan; Nikolic, 2005
INE 5442 / EEL 7312
Digital Integrated Circuits
62
Lectures 33 to 36
Prof. Güntzel