Download Semicunductor by saradindu ghose for plus 2 physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Ohm's law wikipedia , lookup

Surge protector wikipedia , lookup

Schmitt trigger wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Power electronics wikipedia , lookup

Amplifier wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Negative-feedback amplifier wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Interferometry wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Operational amplifier wikipedia , lookup

CMOS wikipedia , lookup

Wilson current mirror wikipedia , lookup

TRIAC wikipedia , lookup

Rectiverter wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Current mirror wikipedia , lookup

Opto-isolator wikipedia , lookup

Power MOSFET wikipedia , lookup

Transcript
JFET
N-Channel
MITS- Saradindu -08
P-Channel
 Fig. (a) is the schematic symbol for the n-channel JFET, and Fig. (b) shows the
symbol for the p-channel JFET.
 The only difference is the direction of the arrow on the gate lead.
Fig. (a)
MITS- Saradindu -08
Fig. (b)
 Fig. illustrates the current flow
in an n-channel JFET with p-type
gates disconnected.
 The amount of current depends
upon two factors:
The value of the drainsource voltage, VDS
 The drain-source resistance,
designated rDS
MITS- Saradindu -08
 The gate regions in a JFET are embedded on each side of the channel to
help control the amount of current flow in the channel.
 Fig. (a) shows an n-channel JFET with both gates shorted to the source.
 Fig. (b) shows how an n-channel JFET is normally biased.
Fig.
MITS- Saradindu -08
 Fig. (a) shows an n-channel JFET connected to the proper biasing
voltages.
 The drain is positive and the gate is negative, creating the depletion
layers.
 Fig. (c) shows a complete set of drain curves for the JFET in Fig. (a).
MITS- Saradindu -08



Many techniques can be used to bias JFETs.
In all cases, the gate-source junction is reversebiased.
The most common biasing techniques are




Gate
Self
Voltage-divider
Current-source
 Fig. (a) shows an example of gate bias.
 Fig. (b) shows how an ac signal is coupled to the gate of a JFET.
 If RG were omitted, as shown in (c), no ac signal would appear at the
gate because VGG is at ground for ac signals.
MITS- Saradindu -08
 One of the most common ways to bias a JFET is with self-bias. (See Fig. a)
 Only a single power supply is used, the drain supply voltage, VDD.
MITS- Saradindu -08
 Fig. shows a JFET with voltagedivider bias.
 Since the gate-source junction
has extremely high resistance, the
R1 – R2 voltage divider is
practically unloaded.
 Voltage-divider bias is more
stable than either gate or self-bias.
MITS- Saradindu -08
 Fig. shows one of the best ways to
bias JFETs, called current-source bias.
 The npn transistor with emitter bias
acts like a current source for the JFET.
 The drain current , ID, equals the
collector current, IC, which is
independent of the value of VGS.
MITS- Saradindu -08




JFETs are commonly used to amplify small ac
signals.
One reason for using a JFET instead of a bipolar
transistor is that very high input impedance, Zin,
can be obtained.
A big disadvantage, however, is that the voltage
gain, AV, obtainable with a JFET is much smaller.
JFET amplifier configurations are as follows:
Common-source (CS)
 Common-gate (CG)
 Common-drain (CD)

 Fig. (a) shows a common-source amplifier.
 For a common-source amplifier, the input voltage is applied to the gate
and the output is taken at the drain.
MITS- Saradindu -08
 The ac equivalent circuit is shown in Fig. (b)
 On the input side, RG = Zin, which is 1 MΩ.
 This occurs because with practically zero gate current, the gate-source
resistance, designated RGS, approaches infinity.
Fig. (b)
MITS- Saradindu -08
 Fig. (a) shows a common-drain amplifier, usually referred to as a
source follower.
 A source follower has a high input impedance, low output impedance,
and a voltage gain of less than one, or unity.
MITS- Saradindu -08
 A common-gate amplifier has a moderate voltage gain.
 Its big drawback is that Zin is quite low.
 Fig. (a) shows a CG amplifier.
MITS- Saradindu -08





The metal-oxide semiconductor field effect
transistor has a gate, source, and drain just like
the JFET.
The drain current in a MOSFET is controlled by
the gate-source voltage VGS.
There are two basic types of MOSFETS: the
enhancement-type and the depletion-type.
The enhancement-type MOSFET is usually
referred to as an E-MOSFET, and the depletiontype, a D-MOSFET.
The MOSFET is also referred to as an IGFET
because the gate is insulated from the channel.
 Fig. (a) shows the construction of an n-channel depletion-type MOSFET,
and Fig. (b) shows the schematic symbol.
MITS- Saradindu -08
 Fig. shows the construction and schematic symbol for a p-channel,
depletion-type MOSFET.
 Fig. (a) shows that the channel is made of p-type semiconductor
material and the substrate is made of n-type semiconductor material.
 Fig. (b) shows the schematic symbol.
MITS- Saradindu -08
 Fig. (a) shows the
construction of an n-channel,
enhancement-type MOSFET.
 The p-type substrate makes
contact with the SiO2
insulator.
 Because of this, there is no
channel for conduction
between the drain and source
terminals.
Fig.(a)
MITS- Saradindu -08



Zero-bias can be used only with depletion-type
MOSFETs.
Even though zero bias is the most commonly
used technique for biasing depletion-type
MOSFETs, other techniques can also be used.
Biasing techniques include
Self
 Voltage-divider
 Current-source


Drain-feedback bias is often used to bias EMOSFETs
 Fig. (a) shows a popular biasing technique that can be used only with
depletion-type MOSFETs.
 This form of bias is called zero bias because the potential difference
between the gate-source region is zero.
MITS- Saradindu -08



One disadvantage of MOSFET devices is their
extreme sensitivity to electrostatic discharge
(ESD) due to their insulated gate-source
regions.
The SiO2 insulating layer is extremely thin and
can be easily punctured by an electrostatic
discharge.
The following is a list of MOSFET handling
precautions

Never insert or remove MOSFETs from a circuit with
the power on.

MOSFET handling precautions (Continued)



Never apply input signals when the dc power
supply is off.
Wear a grounding strap on your wrist when
handling MOSFET devices.
When storing MOSFETs, keep the device leads in
contact with conductive foam, or connect a shorting
ring around the leads.