Download Life and Death of Stars

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

P-nuclei wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

Planetary nebula wikipedia , lookup

Main sequence wikipedia , lookup

Star formation wikipedia , lookup

Nucleosynthesis wikipedia , lookup

Stellar evolution wikipedia , lookup

Transcript
Life and Death of Stars
Recapitulation of How Elements are
Formed
“If you wish to make an apple pie
from scratch, you must first invent
the universe.”
- Carl Sagan
Cosmos. New York: Random House. 1980.
The Big Bang and Soon After
The “Cosmic Microwave Background Radiation” (CMB), Present Day
"Ilc 9yr moll4096" by NASA / WMAP Science Team - http://map.gsfc.nasa.gov/media/121238/ilc_9yr_moll4096.png. Licensed under Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Ilc_9yr_moll4096.png#mediaviewer/File:Ilc_9yr_moll4096.png
The Big Bang and Soon After (ctd.)
Temp Cools from 10 Billion K to 1 Billion K
"Scheme of nuclear reaction chains for Big Bang nucleosynthesis" by Pamputt - Own work ; vectorisation de The main nuclear reaction chains for Big Bang nucleosynthesis.jpg. Licensed under CC BY-SA 4.0 via
Wikimedia Commons http://commons.wikimedia.org/wiki/File:Scheme_of_nuclear_reaction_chains_for_Big_Bang_nucleosynthesis.svg#mediaviewer/File:Scheme_of_nuclear_reaction_chains_for_Big_Bang_nucleosynthesis.svg
Life of a Small Star
Around the mass of
1 Sun up to ~5 Solar Masses
“Before she became a star…”
Nebula – Cloud of Gas (mostly H)
"Eagle nebula pillars" by Credit: NASA, Jeff Hester, and Paul Scowen (Arizona State University) - http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/34/image/a. Licensed under Public Domain via
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Eagle_nebula_pillars.jpg#mediaviewer/File:Eagle_nebula_pillars.jpg
“On her way to the audition…”
Protostar (NOT A STAR YET)
"Witness the Birth of a Star" by NASA/JPL-Caltech/R. Hurt (SSC) - Image of the day gallery. Licensed under Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Witness_the_Birth_of_a_Star.jpg#mediaviewer/File:Witness_the_Birth_of_a_Star.jpg
Once it’s hot enough…
NUCLEAR FUSION
"FusionintheSun" by Borb. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:FusionintheSun.svg#mediaviewer/File:FusionintheSun.svg
How Fusion Works
(Yes, you can actually know this.)
• Need very high temperatures, ~10-15 million K
• Protons overcome repulsion
– Stick due to “Strong Nuclear Force”
• Mass of 4 p+ > Mass of 1 He
– Where did the missing mass go?
How Fusion Works
(ctd.)
• E = mc2
• Lost mass is converted
to energy!
• Basis for all fusion
processes that release
(or absorb) energy
“A star is born!”
Main Sequence – Doing H Fusion
"The Sun in extreme ultraviolet" by NASA - [1]. Licensed under Public Domain via Wikimedia
Commons http://commons.wikimedia.org/wiki/File:The_Sun_in_extreme_ultraviolet.jpg#mediaviewer/File:Th
e_Sun_in_extreme_ultraviolet.jpg
"Sirius A and B Hubble photo" by NASA, ESA, H. Bond (STScI), and M. Barstow (University of
Leicester) - http://www.spacetelescope.org/images/html/heic0516a.html. Licensed under CC BY
3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Sirius_A_and_B_Hubble_photo.jpg#mediaviewer/File:Siri
us_A_and_B_Hubble_photo.jpg
After billions of years…
• H fuel runs out in the
middle, He accumulates
• Not hot enough to fuse
together He atoms
• Gravity starts to take
over!
“She suffered a partial collapse…”
A Small Star Evolves
• Outside comes in, REHEATING DUE TO
GRAVITATIONAL POTENTIAL
• It’s Red Giant time!
• Hot enough to fuse He into C, N
• (See next slide for size comparison)
Red Giant Stage –
An Old “Small” Star
"The life cycle of a Sun-like star (annotated)" by ESO/M. Kornmesser - http://www.eso.org/public/images/eso1337a/. Licensed under CC BY 4.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:The_life_cycle_of_a_Sun-like_star_(annotated).jpg#mediaviewer/File:The_life_cycle_of_a_Sun-like_star_(annotated).jpg
“So explosive!”
Losing the Shell – Planetary Nebula
• Fusion of He to C, N
releases much more
energy
• Gravity can’t hold it
together
• Loses the outer gases –
Planetary Nebula
– NOTHING TO DO WITH
PLANETS
"Seeing into the Heart of Mira A and its Partner" by ESO/S. Ramstedt (Uppsala University,
Sweden) & W. Vlemmings (Chalmers University of Technology, Sweden) http://www.eso.org/public/images/potw1447a/. Licensed under CC BY 4.0 via Wikimedia
Commons http://commons.wikimedia.org/wiki/File:Seeing_into_the_Heart_of_Mira_A_and_its_Partner.jpg#
mediaviewer/File:Seeing_into_the_Heart_of_Mira_A_and_its_Partner.jpg
Another Planetary Nebula
"M57 The Ring Nebula" by The Hubble Heritage Team (AURA/STScI/NASA) - http://hubblesite.org/newscenter/archive/releases/1999/01/image/a/ (direct link). Licensed under Public Domain via
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:M57_The_Ring_Nebula.JPG#mediaviewer/File:M57_The_Ring_Nebula.JPG
“How do you feel inside?”
The Leftover Core – White Dwarf
• Core is white hot, but
NOT hot enough to fuse
C with C
• Most white dwarfs
simply fade out over a
LONG time
– Theoretical “black
dwarf” is typical fate
• But there may be
another way to go out!
"Sirius A and B Hubble photo.editted" by Bokus http://upload.wikimedia.org/wikipedia/commons/f/f3/Sirius_A_and_B_Hubble_photo.jpg.
Licensed under Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Sirius_A_and_B_Hubble_photo.editted.PNG#mediaviewe
r/File:Sirius_A_and_B_Hubble_photo.editted.PNG
Type Ia Supernova
“She got help from a friend…”
Enough energy is released to fuse C into
elements heavier than C.
"Progenitor IA supernova" by NASA, ESA and A. Feild (STScI); vectorisation by chris 論 - http://hubblesite.org/newscenter/archive/releases/star/supernova/2004/34/image/d/. Licensed under CC BY
3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Progenitor_IA_supernova.svg#mediaviewer/File:Progenitor_IA_supernova.svg
Type Ia Supernova –
Example
High-Z Supernova Search Team/HST/NASA
Life of a Large Star
Around the mass of
8 Suns and up
Large Stars on the Main Sequence
More mass → More gravitational energy →
Higher core temperature → Faster fusion rate
→ Shorter time on the main sequence
"Hot and brilliant O stars in star-forming regions" by ESO - http://www.eso.org/public/images/eso1230b/. Licensed under CC BY 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Hot_and_brilliant_O_stars_in_star-forming_regions.jpg#mediaviewer/File:Hot_and_brilliant_O_stars_in_star-forming_regions.jpg
A Large Star Evolves –
Red Supergiant Stage(s)
• Akin to small mass star,
fuel runs out, core
reheats, fusing He to C
• Enough mass to repeat
the process, fusing
heavier and heavier
elements
– Ne, Mg, Al, for example
– All the way up to Fe
• Resembles an onion
Betelgeuse at upper left is a red supergiant
"Orion Head to Toe" by Rogelio Bernal Andreo - http://deepskycolors.com/astro/JPEG/RBA_Orion_HeadToToes.jpg. Licensed under CC BY-SA 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Orion_Head_to_Toe.jpg#mediaviewer/File:Orion_Head_to_Toe.jpg
“A total collapse!”
End of a Large Star
• Fe builds up in the core
• Not enough outward
pressure
– Gravity takes over
• Outer layers rush in,
and BOUNCE off the
core
– Enough energy released
to fuse ANY naturally
occurring element
– Surplus of energy can
form Au, Pb, I, etc.
"HST SN 1987A 20th anniversary" by NASA, ESA, P. Challis, and R. Kirshner (HarvardSmithsonian Center for Astrophysics) http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/ (direct link). Licensed under
Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:HST_SN_1987A_20th_anniversary.jpg#mediaviewer/File:
HST_SN_1987A_20th_anniversary.jpg
The Aftermath –
Neutron Stars and Black Holes
"IsolatedNeutronStar" by Original uploader was Northgrove at en.wikipedia - Transferred from
en.wikipedia. Licensed under Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:IsolatedNeutronStar.jpg#mediaviewer/File:IsolatedNeutro
nStar.jpg
"BH LMC" by User:Alain r - Own work. Licensed under CC BY-SA 2.5 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:BH_LMC.png#mediaviewer/File:BH_LMC.png
Other Element Formation –
Cosmic Rays
• High-energy particles
either left over from the
Big Bang or ejected
from stars/supernovae
• Slam into heavier
elements occasionally
and split them into
smaller nuclei
– E.g., Li, Be, B
Earth’s Moon blocks muon cosmic rays
"Moon's shadow in muons" by http://hepweb.rl.ac.uk/ppUKpics/POW/pr_990602.html. Licensed
under Fair use via Wikipedia http://en.wikipedia.org/wiki/File:Moon%27s_shadow_in_muons.gif#mediaviewer/File:Moon%27s_
shadow_in_muons.gif
Summary –
Different Processes Make Elements
• Big Bang – H, He, Li (a little)
• Small Mass Stars
– He (main sequence)
– C, N (red giant)
– Heavier than C (only type Ia supernova)
• Large Mass Stars
– He (main sequence)
– C, N, etc., all the way up to Fe (red supergiant)
– All natural elements (only type II supernova)
• Cosmic Rays – Li, Be, B (split off from larger atoms)