Download METABOLISMO DE CHO 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
METABOLISMO DE CARBOHIDRATOS 1
(GLUCÓLISIS, CICLO DE LAS PENTOSAS,
CICLO DE KREBS, CADENA RESPIRATORIA Y
FOSFORILACIÓN OXIDATIVA,
GLUCONEOGÉNESIS)
MQ-0200. JGZ
1
GLUCÓLISIS
• Catabólica, en citoplasma.
• La primera parte consume ATP.
• La segunda parte produce equivalentes reductores y
ATP a nivel de sustrato.
• Con excepción
reversibles.
de
tres
reacciones
MQ-0200. JGZ
todas
son
2
Figure 11.2 Interactions between glycolysis and other metabolic pathways. The green colored boxes indicate intermediates involved in the pathway of glycolysis. Other
boxes illustrate some of the metabolic interactions between glycolysis and other metabolic pathways in the cell. Not all of these pathways are active in the red cell which
has limited biosynthetic capacity and lacks mitochondria. Glc-6-P, glucose-6-phosphate; Fru-6-P, fructose-6-phosphate; Fru-1,6-BP, fructose-1,6-bisphosphate.
Downloaded from: StudentConsult (on 26 January 2007 03:56 AM)
© 2005 Elsevier
Figure 11.3 The investment and splitting stages of glycolysis. Note the consumption of ATP at the hexokinase and phosphofructokinase-1 reactions.
Downloaded from: StudentConsult (on 26 January 2007 03:56 AM)
© 2005 Elsevier
Figure 11.4 The yield stage of glycolysis. Substrate-level phosphorylation reactions catalyzed by phosphoglycerate kinase and pyruvate kinase produce ATP, using the
high-energy compounds, 1,3-bisphosphoglycerate and phosphoenolpyruvate, respectively. Note that the NADH produced during the glyceraldehyde-3-phosphate
dehydrogenase reaction is converted back into NAD+ during the lactate dehydrogenase reaction, permitting continued glycolysis in the presence of only catalytic
amounts of NAD+.
© 2005 Elsevier
Figure 11.7 Allosteric regulation of phosphofructokinase-1 (PFK-1) by ATP. AMP is a potent activator of PFK-1 in the presence of ATP.
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
Figure 11.8 Pathway for biosynthesis and degradation of 2,3-bisphosphoglycerate (2,3-BPG). BPG mutase catalyzes the conversion of 1,3-BPG into 2,3-BPG. The same
enzyme has bisphosphoglycerate phosphatase activity, which hydrolyzes the 2-phosphate group, yielding 3-phosphoglycerate. Note that this pathway bypasses the
phosphoglycerate kinase reaction, so that the overall yield of ATP per mol of glucose is decreased.
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
PRODUCCIÓN DE LA GLUCÓLISIS
• Producción neta: 2ATP, 2NADH+H+, 2
piruvatos (aeróbica) o 2ATP y 2
lactatos(anaeróbica)
MQ-0200. JGZ
8
CICLO DE LAS PENTOSAS
• En tejidos con alta síntesis de ácidos grasos y
esteroides, p. ej. mamas en lactancia, hígado,
adiposo, corteza suprarrenal, tiroides,
eritrocitos, testículos.
MQ-0200. JGZ
9
CICLO DE LAS PENTOSAS
• Dos funciones:
– 1. formar NADPH para síntesis de
ácidos grasos y esteroides, y
regeneración de glutatión
reducido.
– 2. formar ribosas para la síntesis
de nucleótidos y ácidos nucleicos.
MQ-0200. JGZ
10
CICLO DE LAS PENTOSAS
• Las enzimas están en el citosol.
• Usan NADP+ y no NAD+ como en la glucólisis.
• El principal producto es ribosa, como subproducto
el CO2, no genera ATP.
MQ-0200. JGZ
11
Figure 11.9 The redox stage of the pentose phosphate pathway. A sequence of three enzymes forms 2 moles of NADPH per mole of Glc-6-P, which is converted into
ribulose-5-phosphate, with evolution of CO2.
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
Figure 11.10 The interconversion stage of the pentose phosphate pathway. The carbon skeletons of three molecules of ribulose-5-phosphate are shuffled to form two
molecules of Fru-6-P and one molecule of glyceraldehyde 3-phosphate.
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
Figure 11.11 Glutathione. Structure of reduced glutathione (GSH) and oxidized glutathione (GSSG).
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
Figure 11.12 Antioxidant activities of glutathione. GSH is the coenzyme for glutathione peroxidase which detoxifies hydrogen peroxide and organic (lipid) hydroperoxides.
Hydrogen peroxide and lipid peroxides are formed spontaneously in the red cell, catalyzed by side reactions of heme iron during oxygen transport on hemoglobin
(Chapter 35).
Downloaded from: StudentConsult (on 31 January 2007 11:00 PM)
© 2005 Elsevier
REACCIÓN DE LA PIRUVATO DESHIDROGENASA (PDH)
• Piruvato entra a la mitocondria por simportador
con H+.
• Luego viene la reacción de la PDH, que requiere
varias coenzimas: tiamina (déficit en alcoholismo
crónico), CoASH, NAD+.
• PDH es inhibida por NADH+H+, ATP, y activada por
insulina.
• Se produce Acetil-CoA que luego entra al ciclo de
Krebs.
MQ-0200. JGZ
16
Figure 13.3 Pyruvate is at the crossroads of metabolism. Pyruvate is readily formed from lactate or alanine. Acetyl-CoA and oxaloacetate are derived from pyruvate
through the catalytic action of pyruvate dehydrogenase and pyruvate carboxylase, respectively. ADP, adenosine diphosphate.
Downloaded from: StudentConsult (on 31 January 2007 04:22 PM)
© 2005 Elsevier
Figure 13.12 Regulation of the pyruvate dehydrogenase complex. The pyruvate dehydrogenase complex regulates the flux of pyruvate into the TCA cycle. NAD(H), ATP
and acetyl CoA exert both allosteric and covalent control of enzyme activity. PDH, pyruvate dehydrogenase; TA, dihydrolipoyl transacetylase; DHLD, dihydrolipoamide
dehydrogenase subunit.
CICLO DE KREBS
• Anfibólica.
• Transforma acetato (transportado por CoA) en CO2,
H2O, con producción de NADH+H+, FADH2 y ATP.
MQ-0200. JGZ
19
Figure 13.1 Amphibolic nature of the TCA cycle. The TCA cycle provides energy and metabolites for cellular metabolism. Because of the catabolic and anabolic nature of
the TCA cycle, it is described as amphibolic. FAD, flavin adenine dinucleotide; GDP, guanosine diphosphate; NADH, nicotinamide adenine dinucleotide; Pi, inorganic
phosphate.
Downloaded from: StudentConsult (on 31 January 2007 04:22 PM)
© 2005 Elsevier
Figure 13.2 Metabolic sources of acetyl-CoA. Carbohydrates, lipids and amino acids are precursors of mitochondrial acetyl-CoA necessary for operation of the TCA cycle.
Downloaded from: StudentConsult (on 31 January 2007 04:22 PM)
© 2005 Elsevier
Figure 13.7 Intermediates and enzymes of the TCA cycle.
Downloaded from: StudentConsult (on 31 January 2007 04:22 PM)
© 2005 Elsevier
Figure 13.8 Toxicity of fluorocitrate - a suicide substrate. Fluorocitrate is a competitive inhibitor of aconitase. OAA, oxaloacetate.
Downloaded from: StudentConsult (on 31 January 2007 04:22 PM)
© 2005 Elsevier
CADENA RESPIRATORIA Y
FOSFORILACIÓN OXIDATIVA
• Es el acople entre la respiración
oxidorreductor) y la síntesis de ATP.
MQ-0200. JGZ
(proceso
24
CADENA RESPIRATORIA Y FOSFORILACIÓN
OXIDATIVA.
• El NADH de la glucólisis entra a la mitocondria:
– Hígado, riñón, corazón: lanzadera malato-oxalacetato
(NADH).
– Cerebro y músculo: lanzadera de dihidroxiacetona
fosfato-glicerol-3-P (FADH2).
• En la membrana interna mitocondrial:
– Hay transporte de equivalentes reductores (e-)
– Ocurre fosforilación oxidativa por una ATPasa (teoría
quimiosmótica)
MQ-0200. JGZ
25
MQ-0200. JGZ
26
PRODUCCIÓN TOTAL
VÍA
METABÓLICA
SUSTRATO
PRODUCTOS
GLUCÓLISIS
AERÓBICA
GLUCOSA
2 ATP, 2
NADH+H+, 2
PIRUVATO
PDH
PIRUVATO
NADH+H+, ACETILCoA
KREBS
ACETIL-CoA
3 NADH+H+,
1 FADH2,1 ATP
CADENA
RESPIATORIA Y
FOSFORILACIÓN
OXIDATIVA
NADH+H+
FADH2
3ATP
2ATP
MQ-0200. JGZ
27
GLUCONEOGÉNESIS
• PRINCIPALES SUSTRATOS:
– LACTATO: CICLO DE CORI=LACTATO MUSCULAR A HÍGADO
PIRUVATO.
→
– GLICEROL: DE TAG.
– AMINO ÁCIDOS: PRINCIPALMENTE ALANINA
• EN MÚSCULO:GLUCOSA
→
PIRUVATO (TRANSAMINACIÓN)
ALANINA
• EN HÍGADO:ALANINA (TRANSAMINACIÓN)
MQ-0200. JGZ
→
PIRUVATO
→
→
GLUCOSA
28
GLUCONEOGÉNESIS
• FUNCIONA CUANDO NO HAY SUFICIENTE GLUCOSA PARA SNC
Y ERITROCITOS.
• SIEMPRE HAY REQUERIMIENTOS BASALES DE GLU.
• GLUCONEOGÉNESIS DEPURA PRODUCTOS METABÓLICOS
MQ-0200. JGZ
29
GLUCONEOGÉNESIS
• ES LA GLUCÓLISIS A LA INVERSA EXCEPTO POR TRES
REACCIONES IRREVERSIBLES:
• 1. PIRUVATO A PEP POR PIRUVATO CARBOXILASA (MIT) Y
PEP CARBOXIQUINASA.
• 2. FRUCTOSA 1,6 BI-P A FRUCTOSA 6 P POR FRUCTOSA
1,6 BIFOSFATASA
• 3. GLU 6 P A GLU POR GLUCOSA 6 FOSFATASA
MQ-0200. JGZ
30
Figure 12.8 Dotted lines: inactive during gluconeogenesis.
MQ-0200. JGZ
31
Downloaded from: StudentConsult (on 1 February 2007 01:40 AM)
© 2005 Elsevier
Figure 12.9 Regulation of gluconeogenesis. Gluconeogenesis is regulated by hepatic levels of Fru-2,6-BP and acetyl CoA. The upper part of the diagram focuses on
the reciprocal regulation of Fru-1,6-BPase and PFK-1 by Fru-2,6-BP and the lower part on the reciprocal regulation of pyruvate dehydrogenase (PDH) and pyruvate
carboxylase (PC) by acetyl CoA.
MQ-0200. JGZ
32