Download Production of NMOCs and Trace Organics During the

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
Transcript
Production of NMOCs and Trace
Organics During the
Decomposition of Refuse and
Waste Components Under
Anaerobic and Aerobic Conditions
Morton Barlaz, Stephen J. Cowie, Bryan Staley
North Carolina State University
Gary R. Hater
Waste Management Inc.
Introduction
Limited understanding of factors
affecting NMOC production
„ Increasing interest among state
regulators
– potential for over estimates
based on US EPA defaults
„
z
NMOC increases as Lo increases
Research Objectives
ƒ
ƒ
ƒ
ƒ
ƒ
Measure an ultimate NMOC yield for
individual components
Study the relationship between gas
production and NMOC release
Compare anaerobic and aerobic
conditions
Identify specific trace organic compounds
Evaluate the contribution of household
hazardous waste (HHW) compounds to
NMOC emissions
Experimental Design
• aerobic operation for
44/68 days prior to the
onset of anaerobic
conditions ( I& II)
• traditional anaerobic
operation (I & II)
• traditional anaerobic
operation plus household
hazardous waste (HHW)
• anaerobic decomposition of
residential food waste (I & II)
• anaerobic decomposition
of mixed paper (I)
• control for background
NMOC production from the
leachate seed
• anaerobic decomposition of
yard waste (I)
• aerobic decomposition of
yard waste (II)
• abiotic conditions (II)
Waste Composition
Paper: 20% ONP, 42% OCC, 15% OFF,
7% OMG, and 16% 3rd class mail
Yard: 25% leaves, 25% branches, 50%
grass
Food : Residential kitchen scraps
MSW: Residential
HHW components
z
Paint remover
– 25 – 30% toluene
– 25 – 30% acetone
– 20 – 25% methylene chloride
z
Motor oil
– 6880 ug/kg toluene
z
Nail polish remover
– 100% acetone
Reactor Setup
Reactor Operation
z
z
z
Triplicate 8-L reactors
Seeded with leachate to initiate
decomposition
Operated with leachate recycle and
neutralization at 37°C
1.2
1
0.78
0.8
AP-42: 0.48
0.35/0.03
0.23/0.23
0.4
t ic
io
Ab
.
SW
-A
er
W
HH
M
SW
+
M
od
Fo
.
rd
-A
er
n.
-A
rd
Ya
SW
0.11/0.14 0.17
0.038
Ya
0.016
r
0
0.15
pe
0.2
M
0.6
Pa
N M O C (m g -C /d ry m g m )
NMOC Yields for
Individual Components
NMOC Yields Under Different
Operating Conditions
NMOC (mg-C/dry gm)
0.4
0.35
0.23/0.23
0.3
0.25
0.15
0.2
0.11/0.14
0.15
0.1
0.038
0.05
0
Yard-An.
Yard-Aer.
MSW
MSW-Aer.
Paper
MSW
0.80
mL CH4/day-dry gm
0.60
0.40
0.20
1.00
M2
0.80
0.60
0.40
0.20
100
200
Day
300
400
500
NMOC Rate
1.E-03
mg NMOC-C/day-dry gm
8.E-04
7.E-04
P1
P2
P3
6.E-04
5.E-04
4.E-04
3.E-04
2.E-04
1.E-04
0.E+00
0
100
200
300
400
200
100
0
0
100
200
300
Day
400
500
0.20
50
100
150
200
Day
250
300
350
8.E-03
M1
M2
2.E-03
1.E-03
MH1
MH2
6.E-03
4.E-03
2.E-03
0.E+00
0
mg NMOC-C/m3
mg NMOC-C/m3
300
0.40
NMOC Rate
NMOC Rate
100
Day
200
300
0
400
NMOC Conc.
M1
M2
1500
1000
500
0
100
Day
200
300
400
NMOC Conc.
4000
2000
P1
P2
P3
0.60
400
3.E-03
2500
400
300
0.E+00
500
NMOC Conc.
500
Day
200
4.E-03
Day
600
100
5.E-03
9.E-04
0.80
0
0
600
mg NMOC-C/day-dry gm
0
MH2
1.00
0.00
0.00
0.00
MH1
1.20
M1
mg NMOC-C/m3
mL CH4/day-dry gm
P1
P2
P3
Methane Rate
1.40
1.20
1.00
mg NMOC-C/day-dry gm
Methane Rate
1.40
mL CH4/day-dry gm
Methane Rate
1.20
MSW + HHW
3000
MH1
2000
MH2
1000
0
0
100
Day
200
300
400
0
100
Day
200
300
400
Percent Yields for Methane and
NMOCs After First Two Samples
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Paper
Yard
MS
MSW +
Percent Yields for Methane and
NMOCs at Midway Point of Operation
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Paper
Yard
MSW
MSW +
Relationship Between Gas Production & NMOC Yield
0.50
Aerobic
Food
Paper
yard (an)
MSW
MSW+HHW
yard (ae)
Food (II)
mg NMOC-C/dry-gram
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
180
230
280
330
380
430
Gas Yield (mL/gm)
480
Individual Organic Compounds
Alkane
Alkene
Alcohol
OH
Chlorinated
organic
Cl
Cl
Cl
Cl
Terpene
O Ketone
O
Volatile
Fatty Acid
OH
Aromatic
Sources of Organics
z
HHW
–
z
chlorinated compounds, aromatics,
alkanes, alkenes
Vegetative Matter
–
terpenes release after plant death
z
z
present in citrus peels
Decomposition Intermediates
–
alcohols, ketones and fatty acids
Types of Organics Released from
Waste Components
Chlorinateds
Ketones
Alkenes
Alkanes
Alcohols
Aromatics
Terpenes
Fraction of Individually Quantified Organics
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.002
0.12
1.13
Paper Waste
Yard Waste
Food Waste
0.13 0.44
0.20
0.10
0.00
MSW
MSW + HHW
Paper
Specific Compounds
97 74
208
171
Ethanol
197
Terpenes
OH
Aromatics
Alcohols
280
Alkanes
Alkenes
1-Butanol
Ketones
Chlorinateds
1462
OH
Yard Waste
1150
605
Specific Compounds
7
Terpenes
5166
z
Aromatics
Alcohols
Alkanes
13162
Alkenes
Ketones
1861
Chlorinateds
611
z
z
α-pinene
Terpenes
− α-pinene
− β-pinene
− Camphene
− Limonene
1-Butanol
2-Methylhexane
Food Waste
1328
Specific Compounds Limonene
2664
602
5223
z
56407
149635
Terpenes
Aromatics
Alcohols
Alkenes
Ketones
Chlorinateds
Alkanes
z
z
Terpenes
− a-pinene
− b-pinene
− Camphene
− Limonene
− g-Terpinine
1-Methyl-4-isopropylbenzene
Ethanol, 1-Butanol, 2Butanone
MSW
565
Specific Compounds
4
997
8083
z
9202
z
2292
Terpenes
Alcohols
Alkenes
Chlorinateds
3419
z
Alkanes
– Pentane
– 2-Methylhexane
1-Butanol
Limonene, α-Pinene
Aromatics
Alkanes
Ketones
2-Methylhexane
MSW + HHW
Specific Compounds
466
2658
1712
15241
8978
2062
z
Toluene
z
Acetone
O
63903
Terpenes
Alkanes
Chlorinateds
Aromatics
Alkenes
Alcohols
Ketones
z
2-Butanone
O
MSW Aerobic
546
Specific Compounds
20044
21068
z
z
1121
495
z
Ethyl Acetate
Pentane
Terpenes
8540
15997
Terpenes
Aromatics
Alcohols
Alkanes
Alkenes
Ketones
O
Ethyl Acetate
Chlorinateds
O
Importance of Fatty Acids
VFAs as % of NMOCs
20
15.3
15
10
5
5.6
5.3
Yard Waste
Paper
Waste
2.6
0.1
0.2
0
Food
Waste
MSWAerobic
MSWAnaerobic
MSW +
HHW
Based on selected high COD time points
Speciated Organics in MSW:
Aerobic vs. Anaerobic
1.0E+06
Anaerobic
Aerobic
Terpenes
1.0E+05
Alcohols
Ketones
Yield (ng/dry gm)
Alkanes
Alkenes
1.0E+04
Aromatics
Chlorinated
1.0E+03
1.0E+02
1.0E+01
1.0E+00
Alkanes
Alkenes
Aromatics Alcohols
Ketones
Terpenes
CAH
Contribution of HHW to
Speciated Organics
1.E+07
--MSW
--MSW + HHW --Food Waste
Mass (ng/dry gram)
1.E+06
1.E+05
Alkanes
1.E+04
1.E+03
1.E+02
1.E+01
1.E+00
Terpenes
Aromatics
Alcohols
Alkenes
Ketones
Chlorinated
5.48
6
5
4
3
SP
S
0.48
N
er
.
0.78
Ab
io
tic
+
SW
M
SW
-A
H
HW
SW
M
0.23
0.17
0.11
M
0.22
Fo
od
Ya
rd
-A
er
.
n.
-A
0
0.15
0.04
0.02
Ya
rd
1
AP
-4
2
2
Pa
pe
r
NMOC (mg-C/dry gm)
Lab-Scale NMOC Yields vs.
Regulatory Estimates
Comparison of AP-42 and
Measured HAP Yields for MSW
MSW
10000
AP-42
1000
100
10
H
ex
a
ne
E
TC
Xy
le
ne
s
Et
hy
lb
en
ze
ne
To
lu
en
e
en
z
en
e
1
B
Yield (ng/dry gm)
100000
Conclusions
ƒ
ƒ
ƒ
Ultimate NMOC yields vary substantially
among MSW components
Lab-scale NMOC and HAP yields are
considerably lower than regulatory
estimates
NMOC production is characterized by an
initial “burst”, followed by much more
gradual release
Conclusions
ƒ
ƒ
High gas production tends to
correlate with high NMOC production
with the exceptions of paper and
yard waste
Decomposition intermediates (fatty
acids) do not appear to be major
contributors to NMOC yields
Conclusions
ƒ
ƒ
ƒ
Aeration results in higher NMOC release
compared to anaerobic decomposition
HHW constituents do not dominate NMOC
yields
Food waste can be high in NMOCs, but is
not a source of HAPs
Additional Work
ƒ
ƒ
Explanation for large variation in
food waste yields
Evaluate how to merge with data
from Waste Industry Air Coalition
Acknowledgement
z
Waste Management Inc. for the support of
this research