Download Sensoren und Aktoren - VLab

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Buck converter wikipedia , lookup

Power inverter wikipedia , lookup

Power engineering wikipedia , lookup

History of electric power transmission wikipedia , lookup

Transformer wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Three-phase electric power wikipedia , lookup

Electrification wikipedia , lookup

Mains electricity wikipedia , lookup

Alternating current wikipedia , lookup

Commutator (electric) wikipedia , lookup

Voltage optimisation wikipedia , lookup

Electric machine wikipedia , lookup

Electric motor wikipedia , lookup

Brushed DC electric motor wikipedia , lookup

Variable-frequency drive wikipedia , lookup

AC motor wikipedia , lookup

Brushless DC electric motor wikipedia , lookup

Induction motor wikipedia , lookup

Stepper motor wikipedia , lookup

Transcript
Vorlesung: Sensoren und Aktuatoren 2015-2016
Sensoren und Akt[uat]oren
Vorlesungen und Labor
Ingenieurswesen-Abteilung - FILS
(3-ten Semester)
Studienplan:
14 x 1 = 14 Stunden Vorlesung
14 x2 = 28 Stunden Labor - LabVIEW
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Stoffplan:
1.
Einleitung. Elektrische Messung nichtelektrischer Größen.
2.
Meßfühler. Übersicht über passive und aktive AufnehmerPrinzipien. Messchaltungen.
3.
Sensoren für geometrische Meßgrößen und mechanische
Beanspruchung,
4.
Temperaturmessung
5.
Intelligente Sensorsysteme
6.
Aktoren
7.
Typische Sensoren und Aktoren der Robotik
8.
Feldbussysteme
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren:
.Bauelemente für die Signalverabeitung mit pneumatischer Hilfsenergie
analoge pneumatische Signalverarbeitung;
pneumatische Schaltelemente
elektrisch-pneumatische Umformer
.Elektronische Steuerungen
.Bauelemente für die Signalverabeitung mit hydraulischer Hilfsenergie
Hydraulische Signal- und Leistungverstärker;
elektrohydraulische Umformer;
Stellglieder mit Drehbewegung;
.Stelleinrichtungen
Stelleinrichtungen für Stoffströme
Stellglieder mit Hubbewegung;
Stellglieder mit Drehbewegung
. Stellantriebe
Stellantriebe mit elektrischer Hilfsenergie
Stellantriebe mit pneumatischer Hilfsenergie
Stellantriebe mit hydraulischer Hilfsenergie
•Schaltgeräte: elektromechanische-, elektromagnetische Relais
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie - Servomotoren
Servomotors are available as AC or DC motors.
Today a class of motors is designed for applications that may use a servo amplifier or a variable-frequency
controller, which means that a motor may be used in a servo system in one application, and used in a
variable-frequency drive in another application. Some companies also call any closed-loop system that does
not use a stepper motor a servo system, so it is possible for a simple AC induction motor that is connected
to a velocity controller to be called a servomotor.
Some changes that must be made to any motor that is designed as a servomotor includes the ability to
operate at a range of speeds without overheating, the ability to operate at zero speed and retain
sufficient torque to hold a load in position, and the ability to operate at very low speeds for long periods of
time without overheating.
One of the most usable types of motors in servo systems is the permanent magnet (PM) type motor. The
voltage for the field winding of the permanent magnet type motor can be AC voltage or DC voltage.
This type of PM motor also has an encoder or resolver built into the motor housing. This ensures that the
device will accurately indicate the position or velocity of the motor shaft.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie - Servomotoren
Typical PM servomotors.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless
Servomotoren
The brushless servomotor is designed to operate without brushes. This means that the
commutation that the brushes provided must now be provided electronically.
Electronic commutation is provided by switching transistors on and off at appropriate times.
The main point about the brushless servomo-tor is that it can be powered by either ac voltage or
dc voltage.
Next figure shows three types of voltage waveforms that can be used to power the brushless
servomotor.
Figure a shows a trapezoidal voltage input and a square wave current input.
Figure b shows a sinusoidal waveform for the input voltage and a square wave current
waveform.
Figure c shows a sinusoidal input waveform and a sinusoidal current waveform. The
sinusoidal input and sinusoidal current waveform are the most popular voltage supplies for the
brushless servomotor.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless
Servomotoren
(a) Trapezoidal input voltage and square
wave current waveforms.
(b) Sinusoidal input voltage and sinusoidal
voltage and square wave output voltage
waveforms.
(c) Sinusoidal input voltage and sinusoidal
current waveforms. This has become the most
popular type of brushless servomotor control.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless
Servomotoren
(a) Transistors connected to the three
windings of the brushless servomotor.
(b) Waveforms of the three separate voltages
that are used to power the three motor
windings.
(c) Waveforms of the signals used to control
the transistor sequence that provides the
waveforms for the previous diagram,
(d) Waveform of the overall back EMF.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Wortschatz:
Schrittmotor
Gleichstrommotor,
Rotor (drehbares Motorteil mit der Welle)
Drehwinkel,
Reluktanz- und Permanentmagnetmotor,
Hybridschrittmotor
Anzahl der Pole
Auflösung
High-Torque Motoren (=hohes Drehmoment)
Kraftdichte
überlastet
Positionsrückmeldung (Encoder, Drehgeber)
Synchronmotor
Servomotoren
Linearmotoren.
Schrittmotoren mit Getriebe.
[nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Prinzip der Schrittmotoren
Schrittmotoren arbeiten völlig anders als
Gleichstrommotoren. Das ist schon daran zu erkennen,
dass diese keine zwei, sondern meist 4, 6 oder 8
Anschlüsse (bipolare oder unipolare Motoren) besitzen.
m den Motor nun in Bewegung zu bringen, muss an
den Spulen eine Spannung angelegt werden. Legt man
die Mittelanzapfung auf Masse, so hat man also noch 4
Anschlüsse. Legt man nun an zwei dieser Anschlüsse
die Spannung an, bewegt sich der Motor - allerdings
nur einen winzigen kaum sichtbaren Schritt. Wie groß
ein Schritt ist, hängt vom jeweiligen Motor ab. Bei den
meisten Motoren beträgt der Schrittwinkel 1,8 Grad.
Nachdem der Motor nun einen Schritt gemacht hat,
muss die Spannung an einer anderen Kombination von
Anschlüssen eingeschaltet werden. Es gibt somit 4
Kombinationen, wobei immer zwei Anschlüsse an die
Spannung und zwei andere auf 0 V gelegt werden.
Dies ist die sogenannte unipolare Ansteuerung.
Wechselt man ständig diese verschiedenen
Anschlussbelegungen, so würde sich der Motor mit
jeder Änderung einen Schritt drehen.
[nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Stepping motors can be viewed as electric motors without commutators. Typically, all windings in the
motor are part of the stator, and the rotor is either a permanent magnet or, in the case of variable
reluctance motors, a toothed block of some magnetically soft material. All of the commutation must
be handled externally by the motor controller, and typically, the motors and controllers are designed
so that the motor may be held in any fixed position as well as being rotated one way or the other.
Most steppers, as they are also known, can be stepped at audio frequencies, allowing them to spin
quite quickly, and with an appropriate controller, they may be started and stopped "on a dime" at
controlled orientations.
For some applications, there is a choice between using servomotors and stepping motors. Both types
of motors offer similar opportunities for precise positioning, but they differ in a number of ways.
Servomotors require analog feedback control systems of some type. Typically, this involves a
potentiometer to provide feedback about the rotor position, and some mix of circuitry to drive a
current through the motor inversely proportional to the difference between the desired position and
the current position.
Stepping motors can be used in simple open-loop control systems; these are generally adequate for
systems that operate at low accelerations with static loads, but closed loop control may be
essential for high accelerations, particularly if they involve variable loads. If a stepper in an
open-loop control system is overtorqued, all knowledge of rotor position is lost and the system must
be reinitialized; servomotors are not subject to this problem.
[nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Stepping motors come in two varieties, permanent magnet and variable reluctance (there are also
hybrid motors, which are indistinguishable from permanent magnet motors from the controller's point
of view). Lacking a label on the motor, you can generally tell the two apart by feel when no power is
applied. Permanent magnet motors tend to "cog" as you twist the rotor with your fingers, while
variable reluctance motors almost spin freely (although they may cog slightly because of residual
magnetization in the rotor). You can also distinguish between the two varieties with an ohmmeter.
Variable reluctance motors usually have three (sometimes four) windings, with a common return,
while permanent magnet motors usually have two independent windings, with or without center taps.
Center-tapped windings are used in unipolar permanent magnet motors.
Stepping motors come in a wide range of angular resolution. The coarsest motors typically turn 90
degrees per step, while high resolution permanent magnet motors are commonly able to handle 1.8
or even 0.72 degrees per step. With an appropriate controller, most permanent magnet and hybrid
motors can be run in half-steps, and some controllers can handle smaller fractional steps or
microsteps.
For both permanent magnet and variable reluctance stepping motors, if just one winding of the motor
is energised, the rotor (under no load) will snap to a fixed angle and then hold that angle until the
torque exceeds the holding torque of the motor, at which point, the rotor will turn, trying to hold at
each successive equilibrium point.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Variable Reluctance Motors
If your motor has three windings, typically connected with one terminal common to all windings, it is
most likely a variable reluctance stepping motor. In use, the common wire typically goes to the
positive supply and the windings are energized in sequence.
The cross section shown in Figure 1.1 is of 30 degree per step variable reluctance motor. The rotor in
this motor has 4 teeth and the stator has 6 poles, with each winding wrapped around two opposite
poles. With winding number 1 energised, the rotor teeth marked X are attracted to this winding's
poles. If the current through winding 1 is turned off and winding 2 is turned on, the rotor will rotate 30
degrees clockwise so that the poles marked Y line up with the poles marked 2.
To rotate this motor continuously, we just apply power to the 3 windings in sequence. Assuming
positive logic, where a 1 means turning on the current through a motor winding, the following control
sequence will spin the motor illustrated in Figure 1.1 clockwise 24 steps or 2 revolutions:
Winding 1 1001001001001001001001001
Winding 2 0100100100100100100100100
Winding 3 0010010010010010010010010
time --->
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Unipolar Motors
Unipolar stepping motors, both Permanent magnet and hybrid stepping motors with 5 or 6 wires are usually
wired with a center tap on each of two windings. In use, the center taps of the windings are typically wired to
the positive supply, and the two ends of each winding are alternately grounded to reverse the direction of the
field provided by that winding.
Motor winding number 1 is distributed between the top and bottom stator pole, while motor winding number 2
is distributed between the left and right motor poles. The rotor is a permanent magnet with 6 poles, 3 south
and 3 north, arranged around its circumference. For higher angular resolutions, the rotor must have
proportionally more poles. As shown in the figure, the current flowing from the center tap of winding 1 to
terminal a causes the top stator pole to be a north pole while the bottom stator pole is a south pole. This
attracts the rotor into the position shown. If the power to winding 1 is removed and winding 2 is energised,
the rotor will turn 30 degrees, or one step.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Unipolar Motors
To rotate the motor continuously, we just apply power to the two windings in sequence. Assuming
positive logic, where a 1 means turning on the current through a motor winding, the following two
control sequences will spin the motor clockwise 24 steps or 2 revolutions:
Winding 1a 1000100010001000100010001
Winding 1b 0010001000100010001000100
Winding 2a 0100010001000100010001000
Winding 2b 0001000100010001000100010
time --->
Winding 1a 1100110011001100110011001
Winding 1b 0011001100110011001100110
Winding 2a 0110011001100110011001100
Winding 2b 1001100110011001100110011
time --->
Note that the two halves of each winding are never energized at the same time. Both sequences
shown above will rotate a permanent magnet one step at a time. The top sequence only powers one
winding at a time, as illustrated in the figure above; thus, it uses less power. The bottom sequence
involves powering two windings at a time and generally produces a torque about 1.4 times greater
than the top sequence while using twice as much power.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Bipolar Motors
Bipolar permanent magnet and hybrid motors are constructed with exactly the same mechanism as is
used on unipolar motors, but the two windings are wired more simply, with no center taps. Thus, the
motor itself is simpler but the drive circuitry needed to reverse the polarity of each pair of motor poles
is more complex. The drive circuitry for such a motor requires an H-bridge control circuit for each
winding; - Briefly, an H-bridge allows the polarity of the power applied to each end of each winding to
be controlled independently. The control sequences for single stepping such a motor are shown
below, using + and - symbols to indicate the polarity of the power applied to each motor terminal:
Terminal 1a +---+---+---+--- ++--++--++--++-Terminal 1b --+---+---+---+- --++--++--++--++
Terminal 2a -+---+---+---+-- -++--++--++--++Terminal 2b ---+---+---+---+ +--++--++--++--+
time --->
Note that these sequences are identical to those for a
unipolar permanent magnet motor, at an abstract level, and
that above the level of the H-bridge power switching
electronics, the control systems for the two types of motor can
be identical.
[nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Grippers
A gripper is a device which enables the holding of an object to be manipulated (a “hand” which
enables holding, tightening, handling and releasing of an object).A gripper is just one component of
an automated system. A gripper can be attached to a robot or it can be part of a fixed automation
system.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Arbeitsweise:
Compressed air is supplied to the cylinder of the gripper body forcing the piston up and down, which
through a mechanical linkage, forces the gripper jaws open and closed.
Parallel Gripper: The gripper jaws move in a parallel motion in relation to the gripper body.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Arbeitsweise:
Angular Gripper: The gripper jaws are opened and closed around a central pivot point, moving in a
sweeping or arcing motion.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Arbeitsweise:
Toggle Gripper: The pivot point jaw movement acts as an over-center toggle lock, providing a high
grip force to weight ratio. This mechanism will remain locked even if air pressure is lost.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Arbeitsweise:
Internal vs External Gripping
Grippers are used in two different holding options, External and Internal. The option used is
determined by the geometry of the part to be grasped, the process to be performed, orientation of the
parts to be grasped and the physical space available.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Arbeitsweise:
Tooling/Finger design considerations: Custom gripper tooling/fingers are needed for each
application. Fingers are used to actually make contact with the part to be grasped.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Rotary Actuators
The rotary actuator is a device use to alternate the rotated position of an object. Just like the human
wrist the actuator enables the rotation of an object, except that rotary actuators are available in a
wide variety of models with different — Sizes, Torques, Rotation angles.The energy for the rotation is
delivered by pneumatic pressure. The rotary actuator converts the air pressure from a linear motion
to a rotating motion.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Aktuatoren für Roboten
Rotary Actuators
Arbeitsweise:
The rotary actuator converts the air pressure from a linear motion to a rotating motion. This is done
by a rack and pinion. Air pressure is supplied pushing the piston in a linear motion, attached to the
piston is a straight set of gear teeth called a "rack". The rack is pushed in a linear motion as the
piston moves. The gear teeth of the rack are meshed with the circular gear teeth of a "pinion" forcing
the pinion to rotate. The pinion can be rotated back into the original position by supplying air pressure
to the opposite side of the air cylinder pushing the rack back in the other direction.The pinion is
connected to a shaft that protrudes from the body of the rotary actuator. This shaft can be connected
to various tools or grippers.
[nach Applied Robotics : http://www.arobotics.com/solutions/
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
A simple thermocouple measurement short history
[credits National Instruments]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Soft Motion Technology
[credits National Instruments]
Mihaela Albu
[email protected]
Vorlesung: Sensoren und Aktuatoren 2015-2016
Remote Laboratories
[credits National Instruments]
Mihaela Albu
[email protected]