Download Angle Modulation Part 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Atomic clock wikipedia , lookup

Electronic engineering wikipedia , lookup

Cellular repeater wikipedia , lookup

Oscilloscope history wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Amplifier wikipedia , lookup

Amateur radio repeater wikipedia , lookup

Spectrum analyzer wikipedia , lookup

Audio crossover wikipedia , lookup

Klystron wikipedia , lookup

Telecommunication wikipedia , lookup

Battle of the Beams wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Broadcast television systems wikipedia , lookup

Equalization (audio) wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

HD-MAC wikipedia , lookup

Analog television wikipedia , lookup

Power electronics wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

405-line television system wikipedia , lookup

Continuous-wave radar wikipedia , lookup

Opto-isolator wikipedia , lookup

Regenerative circuit wikipedia , lookup

Rectiverter wikipedia , lookup

Superheterodyne receiver wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Phase-locked loop wikipedia , lookup

Single-sideband modulation wikipedia , lookup

Heterodyne wikipedia , lookup

Index of electronics articles wikipedia , lookup

Radio transmitter design wikipedia , lookup

Transcript
Angle Modulation
Part 2

Generation & Detection of FM
Application of FM
Generation of FM

Two major FM generation:
i)
Direct method:
straight forward, requires a VCO whose oscillation frequency
has linear dependence on applied voltage.
Advantage: large frequency deviation
Disadvantage: the carrier frequency tends to drift and must
be stabilized.
example circuit:
i)
ii)
iii)
iv)
i)
ii)
Reactance modulator
Varactor diode
Generation of FM (cont’d)
ii) Indirect method:
Frequency-up conversion.
Two ways:
i.
ii.
a.
b.
iii.
Heterodyne method
Multiplication method
One most popular indirect method is the Armstrong
modulator
Armstrong modulator
Vm(t)
fm
Integrator
Balanced
modulator
Phase
shifter
Vc(t)
fc
Frequency
multiplier
(x n)
Down
converter
Crystal oscillator
Armstrong modulator

For example:
Let fm =15Hz and fc= 200kHz
At frequency deviation= 75kHz,it need a frequency
multiplication by a factor, n,
n=75000/15=5000;
So it need a chain of four triplers (34) and six
ie:n= (34) x (26)=5184,
But,
n x fc=5000 x 200kHz=1000MHz
So, down converter with oscillating
needed to put fc in the
FM band of 88MHz-108MHz
doublers (26),
frequency=900MHz is
FM Detection/Demodulation

FM demodulation



is a process of getting back or regenerate the
original modulating signal from the modulated FM
signal.
It can be achieved by converting the frequency
deviation of FM signal to the variation of
equivalent voltage.
The demodulator will produce an output where its
instantaneous amplitude is proportional to the
instantaneous frequency of the input FM signal.
FM detection (cont’d)


To detect an FM signal, it is necessary to
have a circuit whose output voltage varies
linearly with the frequency of the input signal.
The most commonly used demodulator is the
PLL demodulator. Can be use to detect either
NBFM or WBFM.
PLL Demodulator
V0(t)
FM input
Phase
detector
Low pass
filter
Amplifier
fVc0
VCO
Vc(t)
PLL Demodulator


The phase detector produces an average output voltage that is
linear function of the phase difference between the two input
signals. This low frequency component is selected by LPF.
After amplification, part of the signal is fed back through VCO
where it results in frequency modulation of the VCO frequency.
When the loop is in lock, the VCO frequency follows or tracks
the incoming frequency.
PLL Demodulator


Let instantaneous freq of FM Input,
fi(t)=fc +k1vm(t),
and the VCO output frequency,
f VCO(t)=f0 + k2Vc(t);
f0 is the free running frequency.
For the VCO frequency to track the
instantaneous incoming frequency,
fvco = fi; or
PLL Demodulator

f0 + k2Vc(t)= fc +k1vm(t), so,
Vc (t )  fc  f0  k1vm (t )

If VCO can be tuned so that fc=f0, then
Vc (t )  k1vm (t )

Where Vc(t) is also taken as the output voltage,
which therefore is the demodulated output
Comparison AM and FM





Its the SNR can be increased without increasing transmitted
power about 25dB higher than in AM
Certain forms of interference at the receiver are more easily to
suppressed, as FM receiver has a limiter which eliminates the
amplitude variations and fluctuations.
The modulation process can take place at a low level power
stage in the transmitter, thus a low modulating power is
needed.
Power content is constant and fixed, and there is no waste of
power transmitted
There are guard bands in FM systems allocated by the
standardization body, which can reduce interference between
the adjacent channels.
Application of FM

used by most of the field VHF portable,
mobile and base radios in exploration
use today. It is preferred because of its
immunity to noise or interference and
at the frequencies used the antennas
are of a reasonable size.
Summary of angle modulation
-what you need to be familiar with
Summary (cont’d)
Summary (cont’d)

a)
Bandwidth:
Actual minimum bandwidth from Bessel
table:
B  2(n  f m )
b) Approximate minimum bandwidth using
Carson’s rule:
B  2(f  f m )
Summary (cont’d)

Multitone modulation (equation in general):
i  c  Kvm1  Kvm2
i  c  2f1 cos 1t  2f 2 cos 2t....
f1
f 2
i  C t 
sin 1t 
sin 2t......
f1
f2
Summary (cont’d)
v fm t   VC sin i
f1
f 2
v fm t   VC sin[ C t 
sin 1t 
sin 2t ]
f1
f2
 VC sin[ C t  m f 1 sin 1t  m f 2 sin 2t ]...........
Summary (cont’d)Comparison NBFM&WBFM
ANGLE MODULATION
Part 3
Advantages
Disadvantages

Advantages





Wideband FM gives significant improvement in the SNR at the output
of the RX which proportional to the square of modulation index.
Angle modulation is resistant to propagation-induced selective fading
since amplitude variations are unimportant and are removed at the
receiver using a limiting circuit.
Angle modulation is very effective in rejecting interference. (minimizes
the effect of noise).
Angle modulation allows the use of more efficient transmitter power in
information.
Angle modulation is capable of handing a greater dynamic range of
modulating signal without distortion than AM.
Disadvantages



Angle modulation requires a transmission
bandwidth much larger than the message
signal bandwidth.
The capture effect where the wanted signal
may be captured by an unwanted signal or
noise voltage.
Angle modulation requires more complex and
inexpensive circuits than AM.
END OF FREQUENCY
MODULATION