Download IDS (mA)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Background
 Basics of semiconductor physics
 Basics of elementary linear circuit analysis
 Fundamental concepts will however be reviewed
A. Rivetti – INFN Sezione di Torino
Lecture I
Lecture I:
• Semicondunctor properties review
• MOS transistor physics
A. Rivetti – INFN Sezione di Torino
Intrinsic silicon
28.086
14
Si
Silicon properties at 300K
+4
+4
+4
+4
resistivity: 2.3 ·105 W·cm
electron mobility: 1500 cm2/V·s
hole mobility: 475 cm2/V·s
e- diffusion constant: 34 cm2/s
h diffusion constant: 13 cm2/s
intrinsic concentration: 1.45·1010
Energy gap: 1.12 eV
A. Rivetti – INFN Sezione di Torino
Silicon properties
P-doped silicon
+3
+4
+4
+3
It is possible to increase the hole
population by introducing into
the lattice atoms which have
one valence electron less than
the number needed to form
complete bonds with the silicon
atoms.
Typical p-dopant (acceptors) are:
boron, gallium and indium
A. Rivetti – INFN Sezione di Torino
Silicon properties
N-doped silicon
+5
+4
+4
+5
It is possible to increase the epopulation by introducing into
the lattice atoms which have
one valence electron more than
the number needed to form
complete bonds with the silicon
atoms.
Typical n-dopant (donors) are:
phosphorus, arsenic and antimony
A. Rivetti – INFN Sezione di Torino
Silicon properties
The pn junction
p
n
W1
W2
A. Rivetti – INFN Sezione di Torino
pn junction review
Built-in potential
p
n
W1
W2
N
N

ln
 V
ni
A
0
T
2
D
V
T
kT

q
A. Rivetti – INFN Sezione di Torino
pn junction review
Depletion region
V-
V  V V
R

W1 

p
n
W1
W2
2 (  V R )
0

q N A 1 


N
N



D
A
W2
V+
2 (  V R )
0

q N D 1 


N
N



A
D
A. Rivetti – INFN Sezione di Torino
pn junction review
Junction capacitance
VV  V V
R

----
p

-
-
+ +
W1
Cj  A
q
N N
2( N  N
A
A
V+
n
W2
1
D
D
)
 V
0

R
C
1 V
j0

R
0
A. Rivetti – INFN Sezione di Torino
pn junction review
Lecture I
Lecture I:
• Semicondunctor properties review
• MOS transistor physics
A. Rivetti – INFN Sezione di Torino
The nMOS transistor
Gate
Source
Drain
polisilicon
silicon dioxide
n+ diffusions
p- substrate
Bulk
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The nMOS transistor
Source
Gate
G
Drain
S
Bulk
W
D
L
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Accumulation
Source
Gate
Drain
- - - - + + + + + + + +- - - -
Bulk
 Keep VS =VB = VD = 0 and
refer all the voltages to the source
 If VGS < 0, the device is off
Positive mobile carriers (holes)
accumulate underneath the gate
 Source and drain are separated
from the bulk by a depletion region
(negative fixed ions)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Depletion
Gate
Source
----
Drain
- - - - - - - -----
 If VG > VS (VGS > 0), the holes
are repelled and a depletion region
is formed
 The charge on the gate is
mirrored by negative ions
Bulk
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Inversion
Source
Gate
Drain
-- --- -- --- -- --- -- -- - -- - - ----
 If VGS > VTH0, electrons are
attracted underneath the gate
 The charge on the gate is
mirrored by negative free carries
 Source and drain still
separated from the bulk by a
depletion region
Bulk
If VDS > 0 current can flow
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The nMOS resistor
Source
Gate
Drain
Q -C -WL-(V - V )
-- - - ---ox
Bulk
GS
TH 0
 Charge in the channel:
Q  C ox WL(V GS  V TH 0)
 Current: Q / t
V DS
v

E



 t  L/v
n
n
L
W (V  V ) V


C
I
DS
ox
GS
TH 0
DS

n
L
If VDS is very small, the device acts as a voltage controlled
linear resistor
A. Rivetti – INFN Sezione di Torino
The MOS transistor
NMOS I-V characteristic
For the moment, Vsourse is kept at zero
Vdrain
Vdrain
Vgate
Vgate
Vsource
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Linear region
IDS (A)
W/L = 100m/10m
VGS = 2.5 V
150
130
VGS = 2 V
110
VGS = 1.5 V
90
70
50
VGS = 1 V
30
10
VGS = 0.5 V
-10
0
10
20
30
40
50
VDS (mV)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Extending the linear region
IDS (A)
W/L = 100m/10m
400
VGS = 1.25V
300
200
100
0
0
100
200
300
400
VDS (mV)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Transistor test bench
Vdrain
Vgate
Vsource
A. Rivetti – INFN Sezione di Torino
The MOS transistor
A more accurate formula
Source
Gate
Drain  Channel is not uniform
 Consider a small section dL
- - - - - - - - - - - - -- - - -
Bulk
 dQ  C OX WdL(V GS  V  V TH 0)
 IdL   n COX W (V GS  V  V TH 0)dV
2


W
DS
V

I DS   n C OX V GS  V TH 0 V DS 
L 
2 
In the “linear” region, the drain-source current is still a
strong function of VDS. The device acts as a voltage controlled
non-linear resistor
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Extending the linear region
IDS (A)
W/L = 100m/10m
400
This region is well predicted by:
IDS = n COX W [(VGS -VTH0)VDS L
VDS2
]
2
300
200
100
0
0
100
200
300
400
VDS (mV)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Full characteristic
IDS (A)
This region is not predicted by:
IDS = n COX W [(VGS -VTH0)VDS L
VDS2
]
2
400
VGS = 1.25 V
300
200
100
0
0
1
2
2.5
VDS (V)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Saturation region
Source
Gate
Drain
- - - - - - - - - - - - -- - - -
 When VDS=VGS – VTH0 the
channel is pinched-off
 The maximum current is:

1
W
I DS   n C OX
V GS V TH 0
2
L

2
Bulk
In the saturation region (VDS > VGS – VTH ) the current is not
controlled anymore by VDS . The device acts as a voltage
controlled current source
A. Rivetti – INFN Sezione di Torino
The MOS transistor
IDS (A)
Saturation voltage
3 mA
VGS = 2.5 V
1 mA
- 1 mA
400 A
VGS = 1.25 V
200 A
0 A
0
1
2
2.5
VDS (V)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Effect of VDS in saturation
400A
IDS (A)
0
355.75
0
2.5
355.71
355.67
355.63
355.59
355.55
2
2.1
2.2
2.3
2.4
2.5
VDS (V)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Channel length modulation
Source
Gate
Drain
- - - - - - - - - - - - -- - - -
 In saturation, VDS still modifies the
effective channel length
 The current is:

1
W
I DS   n C OX
V GS V TH 0
2
L
 1   V
2
Bulk
In the saturation region VDS slightly modifies the effective
channel length, modulating the current. The device acts as a
voltage controlled current source with a finite output
impedance
A. Rivetti – INFN Sezione di Torino
The MOS transistor
DS

Decreasing channel length
IDS (mA)
W/L = 100m/1m
3.6580
3.6500
3.6420
2
2.1
2.2
2.3
2.4
2.5
VDS (V)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Effect of VGS
IDS (mA)
W/L = 100m/1m
30
20
10
0
-10
0
1
2
2.5
VDS (V)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The threshold voltage
VTH = fMS + 2fF +
QB
COX
-
QOX
COX
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The body effect
What happens to the current if we raise Vsource and Vgate
simultaneously, keeping VGS and VDS constant?
Vdrain
Vgate
Vsource
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The body effect
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The body effect
Source
Gate
Drain
- - - - - - - - - - - - -- - - -
 What happens if VSB is not zero ?
If VS is increased, the depletion region
becomes wider (more uncovered negative ions)
Extra positive charge is needed on the gate
to compensate for this negative ions and
the threshold voltage is increased

1
W

 n C OX
I DS
V GS V TH
2
L
Bulk
 1   V
2
DS
 Still holds, but VTH is now:
VTH = VTH0 + g (
VSB + 2fF
-
2fF
)
g=
2qSINA
COX
A. Rivetti – INFN Sezione di Torino
The MOS transistor

The pMOS transistor
Gate
Source
Drain
polisilicon
silicon dioxide
p+ diffusions
n- substrate
Bulk
A. Rivetti – INFN Sezione di Torino
The MOS transistor
The pMOS transistor
Source
Gate
G
Drain
S
W
D
L
Bulk
Nwell
A. Rivetti – INFN Sezione di Torino
The MOS transistor
CMOS technologies
G
G
S
W
L
D
S
W
D
L
Nwell
Both pmos and nmos devices on the same chip.
This is fundamental for both digital and analog circuits
A. Rivetti – INFN Sezione di Torino
The MOS transistor
CMOS technologies
G
S
W
L
G
D
S
W
D
L
In a nwell process, NMOS devices share the same substrate
which is the wafer substrate
A. Rivetti – INFN Sezione di Torino
The MOS transistor
CMOS technologies
G
S
W
G
D
S
L
Nwell
W
D
L
Nwell
Pmos devices need a local substrate, that may be shared by
more pmos transistors
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Process trends in CMOS technologies
Year
1992
1995
1999
2001
2003
Minimum size
(m)
Tox (nm)
0.5
0.35
0.25
0.18
0.13
9-12
7-10
5-7
3-4
2-3
Metal levels
4
5
6
7
8
Supply (V)
3.3-5
2.5-3.3
2.5-3.3
1.8-2.5
1.2-1.8
200
200
300
300
Wafer
200
diameter (mm)
A. Rivetti – INFN Sezione di Torino
The MOS transistor
MOS in real life...
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Metal interconnections
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Passive components
In IC technologies is relatively easy to fabricate resistor
and capacitors
Metal to metal capacitor
Very linear
Typical density: 0.6 – 0.8 fF/m2
A. Rivetti – INFN Sezione di Torino
The MOS transistor
Resistors
t
W
L
R =r
A
L
R =r
Wt
r
R=
t
L
W
L
R = R•
W
R•ranges typically from 10 W/sq to 2000 W/sq
A. Rivetti – INFN Sezione di Torino
The MOS transistor