Download Lecture 11 - kmutt-inc

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
INC 112 Basic Circuit Analysis
Week 9
Force Response of
a Sinusoidal Input and
Phasor Concept
Forced Response of Sinusoidal
Input
In this part of the course, we will focus on finding the force response
of a sinusoidal input.
• Start oscillate from stop
input
displacement
Period that have transient
• Have oscillated for a long time
input
displacement
We will only be interested in this case for force response (not count the transient)
Input
Phase shift
Amplitude
Output
Theory
Force response of a sinusoidal input is also a sinusoidal signal
with the same frequency but with different amplitude and phase shift.
v2(t) Sine wave
v1(t) Sine wave
i(t) Sine wave
+
2Ω
5sin(3t+π/3)
AC
-
3H
vL(t) Sine wave
i(t)
R
+
sin(t)
AC
C
-
What is the relationship between sin(t) and i(t) ?
sin(t)
i(t)
Phase shift
i(t)
+
AC
10sin(2πt + π/4)
2Ω
Find i(t)
-
v(t )  i (t ) R
10 sin( 2t   / 4)  i(t )  2
10 sin( 2t   / 4)
i (t ) 
2
i (t )  5 sin( 2t   / 4)
Note: Only amplitude changes, frequency and phase still remain the same.
i(t)
+
Asin(ωt)
AC
L
Find i(t)
-
from
di (t )
v(t )  L
dt
1
1
i (t )   v(t )dt   A sin tdt
L
L
A
A   cos t 
  sin tdt  

L
L  
A
A


( cos t ) 
(sin t  )
L
L
2
i(t)
i(t)
+
+
Asin(ωt)
AC
L
Asin(ωt)
AC
R
-
-
A

i (t ) 
(sin t  )
L
2
A
i (t )  (sin t )
R
ωL เรียก ความต้ านทานเสมือน (impedance)
Phase shift -90
Phasor Diagram of an inductor
Phasor Diagram of a resistor
v
v
i
i
Power = (vi cosθ)/2 = 0
Power = (vi cosθ)/2 = vi/2
Note: No power consumed in inductors
i lags v
i(t)
+
Asin(ωt)
AC
C
Find i(t)
-
dv(t )
d ( A sin t )
i (t )  C
C
dt
dt
 AC (cos t )
A


sin( t  )
2
 1 


 C 
ความต้ านทานเสมือน (impedance)
Phase shift +90
Phasor Diagram of a capacitor
Phasor Diagram of a resistor
i
v
v
i
Power = (vi cosθ)/2 = 0
Power = (vi cosθ)/2 = vi/2
Note: No power consumed in capacitors
i leads v
Kirchhoff's Law with AC Circuit
KCL,KVL still hold.
vR
i
vR (t )  3sin( t )
i(t)
v(t)
R
+
v(t)
AC
i
C
-
v(t )  3 sin( t )  4 sin( t  90o )
 5 sin( t  53.13 )
o
vC
vC (t )  4 sin( t  90o )
v(t )  5 sin( t  53.13o )
 5 sin( t ) cos(53.13 )  5 cos(t ) sin( 53.13 )
 3 sin( t )  4 cos(t )
o
o
 3 sin( t )  4 sin( t  90 )
o
This is similar to adding vectors.
Therefore, we will represent sine voltage with a vector.
3
5
4
Vector Quantity
Complex numbers can be viewed as vectors where
X-axis represents real parts
Y-axis represents imaginary parts
There are two ways to represent complex numbers.
• Cartesian form 3+j4
• Polar form
5∟53o
Operation add, subtract, multiply, division?
Complex Number Forms
(Rectangular, Polar Form)
a  jb
b
r  
r  a b
2
r
θ
a
2
b
  arctan  
a
a  r cos 
b  r sin 
Interchange Rectangular, Polar form
jω
s = 4 + j3
3
σ
4
Rectangular form:
Polar form
4 + j3
magnitude=5, angle = 37
บวก ลบ คูณ หาร vector ??
Rectangular form
Add, Subtraction
(4  j 3)  (1  j )  5  j 4
Polar form
Multiplication
537  2  12
 5  2(37  12 )  1025
Division
537  2  12
5
 49
2
Note: Impedance depends on frequency and R,L,C values
Cartesian form
Polar form
a  jb
cd
c  magnitude  a 2  b 2

b
d  phase  tan  
a
1
Example: Find impedance in form of polar value for ω = 1/3 rad/sec
3H
1Ω
1
R  jL  1  j  3   1  j  245
3
Rules that can be used in
Phasor Analysis
• Ohm’s law
• KVL/KCL
• Nodal, Mesh Analysis
• Superposition
• Thevenin / Norton
Example
+ vR(t) +
AC
-
1Ω
2sin(t/3)
i(t)
+
vL(t)
-
Find i(t), vR(t), vL(t)
3H
V
20

I


2


45
Z total
245
Phasor form
VR  IR  2  45 1  2  45


VL  IZ L  I  jL  2  45 190  245




i (t )  2 sin( t / 3  )
4
I  2  45
VR  2  45
VL  245



vR (t )  2 sin( t / 3  )
4

vL (t )  2 sin( t / 3  )
4
V
I
In an RLC circuit with sinusoidal voltage/current source,
voltages and currents at all points are in sinusoidal wave form too
but with different amplitudes and phase shifts.
Summary of Procedures
• Change voltage/current sources in to phasor form
• Change R, L, C value into phasor form
R
L
C
R
jωL
1/jωC
• Use DC circuit analysis techniques normally, but the value of
voltage, current, and resistance can be complex numbers
• Change back to the time-domain form if the problem asks.
Example
+ vR(t) 2Ω
+
5sin(3t+π/3)
AC
-
i(t)
+
vL(t)
-
Find i(t), vL(t)
3H
i(t)
+
2
5∟60
AC
-
j9
i(t)
+
2
5∟60
AC
-
j9
Z total  2  j 9  9.2277.47 
V
560

I


0
.
54


17
.
47
Z total 9.2277.47
i (t )  0.54 sin( 3t  0.3)
VL  IZ L  I  j9  0.54  17.47  990  4.8872.53
vL (t )  4.88 sin( 3t  1.27)
VR  IR  I  2  0.54  17.47  20  1.08  17.47



Phasor Diagram
V
I  0.54  17.47
VL
VL  4.8872.53

VR  1.08  17.47
VR
Resistor consumes power
I
2
0
.
54
2
2
P  I rms
R
2
Inductor consumes no power P = 0