Ko`chirib olish - Toshkent Farmatsevtika Instituti Download

Transcript
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
O‘ZBEKISTON RESPUBLIKASI SOG‘LIQNI SAQLASH VAZIRLIGI
TOSHKENT FARMATSEVTIKA INSTITUTI
FIZIKA, MATEMATIKA VA AXBOROT TEXNOLOGIYALARI KAFEDRASI
FIZIKA FANIDAN FARMATSIYA FAKULTETI FARMATSIYA VA SANOAT
FARMATSIYA FAKULTETLARI YO`NALISHLARI UCHUN
O`QUV- USLUBIY MAJMUA
TOSHKENT -2016
1
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
«FIZIKA» fanining
2015-2016 o‘quv yili uchun mo‘ljallangan
SILLABUSI
OTMning nomi
va joylashgan
manzili:
Kafedra:
Toshkent farmatsevtika instituti
Oybek, 45
Fizika, matematika va axborot
2 o‘quv binosi 4 qavat
texnologiyalari
510000 –
5510500 – Farmatsiya (turlari bo‘yicha)
Ta’lim sohasi va
Sog‘liqni saqlash 5111039 – Kasb ta’limi (Farmatsiya)
yo‘nalishi:
5510600 – Sanoat farmatsiyasi (turlari bo‘yicha)
5320500 – Biotexnologiya
Sodikova
Fanni (kursni) olib
boradigan o‘qituvchi Nargiza
e-mail:
umail.uz:
Baxtiyarovna
[email protected]
[email protected]
to‘g‘risida
[email protected]
S_nargiza1973&mail.uz
Tursunova
ma’lumot:
Zuxra Botirovna
kafedra
katta
o‘qituvchilari
Dars jadval
Dars vaqti va joyi:
Kursning
asosida
1 kurs I/II semestr
Davomiyligi:
kafedrada
Individual grafik
Payshanba va juma kunlari 13.30 dan 15.00 gacha
asosida ishlash
vaqti:
Auditoriya soatlari
Mustaqil
Fanga
ajratilgan
ta’lim
Ma’ruza 36 Amaliyot 4
Laboratoriya
68
soatlar
74
mashg‘ulotlari
– Oliy matematika, kimyo fanlaridan olgan bilimlariga asoslanadi.
Fanning boshqa
fanlar bilan
bog‘liqligi
(prerekvizitlar):
Ushbu fan barcha tabiiy va mutaxassislik fanlarni o‘zlashtirish uchun asos
(postrekvizitlar):
bo‘ladi
2
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
O‘ZBEKISTON RESPUBLIKASI
SOG‘LIQNI SAQLASH VAZIRLIGI
TOSHKENT FARMATSEVTIKA INSTITUTI
Fizika, matematika va axborot texnologiyalari kafedrasi
Ro‘yxatga olindi:
”TASDIQLAYMAN”
O‘quv ishlari bo‘yicha prorektor
f.f.n., S.U.Aliev
________________________
”____ “ ____________2016 yil
№ ___________________
2016 y. “____” ____________
“FIZIKA”
FANING
ISHCHI O‘QUV DASTURI
Bilim sohasi:
Ta’lim sohasi:
500000 Sog‘liqni saqlash va ijtimoiy ta’minot
510000 Sog‘liqni saqlash
Ta’lim yo’nalishi:
5510500 Farmatsiya (Klinik farmatsiya)
5510500 Farmatsiya (Farmatsevtik taxlil)
5510500 Farmatsiya (Farmatsevtika ishi)
5111000 Kasb ta’limi (5510500- Farmatsevtika ishi)
5510600 Sanoat farmatsiyasi (Dori vositalari)
5510600 Sanoat farmatsiyasi (Farmatsevtik biotexnologiya)
5510600 Sanoat farmatsiyasi (Kosmetsevtika)
3
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Toshkent – 2016 yil
Fanning ishchi o‘quv dasturi o‘quv, ishchi reja va o‘quv dasturiga
muvofiq ishlab chiqildi.
Tuzuvchilar:
N.B. Sodikova – Toshkent Farmatsevtika instituti “Fizika, matematika va AT”
kafedrasi, katta o‘qituvchi
Z.B. Tursunova - Toshkent Farmatsevtika instituti “Fizika, matematika va AT”
kafedrasi, katta o‘qituvchi
SH.SH. Sattorov - Toshkent Farmatsevtika instituti “Fizika, matematika va AT”
kafedrasi, o‘qituvchi
Taqrizchilar:
M.A.Fattaxov - TTESI “Fizika va elektrotexnika” kafedrasi dotsenti
M.G‘. Ismoilova - Toshkent Farmatsevtika instituti Biotexnologiya kafedrasi
mudiri, f.f.d.
Fanning ishchi o‘quv dasturi “Fizika, matematika va AT” kafedrasining 2016
yil “------”----------------- dagi ------ - sonli majlisida muhokamadan o‘tgan va fakultet
kengashida muhokama qilish uchun tavsiya etilgan.
Fizika, matematika va AT kafedrasi mudiri
Sanoat farmatsiya fakulteti ilmiy kengashining
2016 yil “------”--------------dagi -------- - sonli majlisida muhokama qilinib,
tasdiqlash uchun tavsiya etildi:
Sanoat farmatsiya fakulteti
ilmiy kengashining raisi, dotsent
X.SH. Ilxomov
“------”--------------2016 yil
4
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Ishchi dastur MUKning 2016 yil “------”--------------dagi------ - sonli majlisida
muhokama qilib tasdiqlandi.
Fanning dolzarbligi va qisqacha mazmuni:
Sog‘liqni saqlashning profilaktik yo‘nalishini kuchaytirish, tibbiy xizmatni sifatini yaxshilash,
aholini zamonaviy, mahalliy dori-darmonlar bilan ta’minlash hozirgi dolzarb masalalardan biri
bo‘lib hisoblanadi. Bu masalalarni hal etish uchun chuqur maxsus bilimga, amaliy ko‘nikmalarga va
yuqori nazariy tayyorgarlikka ega bo‘lgan mutaxassislarni tayyorlash zarur.
Fizika fani farmatsevt va muhandis-texnolog mutaxassislarni tayyorlashda asosiy fanlardan
hisoblanadi. CHunki fizika asoslari tirik organizmlarda sodir bo‘ladigan jarayonlarni, fizik
mexanizmlarni, dori moddalarining harakatlari va ta’sirlarini o‘rganishda keng qo‘llaniladi. Bu esa
tibbiy va farmatsevtika instituti talabalariga fizika fanini o‘rgatish zarurligini ko‘rsatadi.
Fanni o‘qitishdan maqsad
Farmatsevtika sohasining farmatsevt va muhandis-texnolog mutaxassisligi bo‘yicha ta’lim
olib muhandis-texnolog bo‘lib chiquvchi talabalarga o‘qitiladigan fizika va biofizika fanining
maqsad va vazifasi barcha kimyo fanlarida, farmakologiyada, dori turlari texnologiyasi fanlarida
zamin tayyorlash, undan tashqari fizik-kimyoviy tahlil usullarining nazariy va amaliy asoslarini
berish hamda ularning amaliy tadbiqi bo‘yicha malaka hosil qilishdan iborat.
Fanning vazifasi
fizika fanining maqsad va vazifalarini hamda ularni echish
usullarini;
- fizikaning asosiy qonunlarini;
- moddani fizik tadqiqot qilish usullarining nazariy asoslarini;
- moddaning fizik xossalari va xarakteristikalarini;
- tirik organizmga ta’sir qiluvchi fizik omillarning xarakteristikalarini;
- fizik asboblarning ishlash prinsiplarini;
- fizik apparatlar bilan ishlashda o‘lchov talablarini;
- texnika xavfsizligi qoidalarini;
- laboratoriya ishlarini mustaqil bajara olishni;
Talabalar uchun talablar
«Fizika» o‘quv fanini o‘zlashtirish jarayonida bakalavr:
- fizika fani bo‘yicha o‘quv adabiyotlari va ma’lumotlardan foydalana bilish;
- olgan nazariy bilimlari asosida amaliy mashg‘ulotlar bajara olishi;
- olgan nazariy va amaliy bilimlarini mutaxassislik fanlarini
o‘zlashtirishda qo‘llay bilishi;
5
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
- olgan nazariy va amaliy bilimlarini ish faoliyatida qo‘llay bilish ko‘nikma va malakalariga
ega bo‘lishi lozim.
Elektron pochta orqali munosabatlar tartibi
Professor-o‘qituvchi va talaba o‘rtasidagi aloqa elektron pochta orqali ham amalga oshirilishi
mumkin, telefon orqali baho masalasi muhokama qilinmaydi, baholash faqatgina institut hududida,
ajratilgan xonalarda va dars davomida amalga oshiriladi.
Elektron pochtani ochish vaqti soat 15.00 dan 20.00 gacha.
“Fizika” fanidan mashg‘ulotlarning mavzular va soatlar bo‘yicha taqsimlanishi:
FAN MAVZULARI VA UNGA AJRATILGAN SOATLAR TAQSIMOTI:
Ma’ruza mavzulari
№
1.
2.
3.
4.
5.
6.
7.
8.
9.
Mavzular
Mexanikaning fizik asos-lari.
Umumiy
tushunchalar.
Kinematika.
Mexanikaviy tebranishlar va
to‘lqinlar.
Suyuqlik va gazlar mexanikasi.
Suyuqlik va gazlarda bosim.
Paskal va Arximed qonunlari.
Ideal gaz. Gazlar molekulyar
kinetik nazariyasi asoslari.
Gaz molekulalarining tezliklari
bo‘yicha taqsimoti Maksvell va
Bolsman taqsimoti to‘g‘risida
tushuncha.
Termodinamika asoslari. Ish va
issiqlik
miqdori,
issiqlik
almashinuvi.
Termodinamikaning birinchi bosh
qonuni.
Suyuqliklar, ularning molekulyar tuzilishining xususiyatlari. Suyuqliklardagi ko‘chish
hodisalari.
Elektrostatika.
O‘zgarmas tok qonunlari. Tok
Ma’ruza
Laboratoriya
Mustaqil ish
2
10
4
2
4
4
4
2
6
2
4
4
4
2
6
4
2
4
4
2
2
2
6
2
-
4
4
6
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
10.
11.
kuchi va zichligi. Zanjirning bir
qismi uchun Om qonuni.
Dielektriklar. Elektrik dipol.
Dielektriklarning
qutblanishi.
Dielektriklarning turlari
Magnitizm. Magnit maydon.
Tokli kontur.
4
2
2
4
4
12.
Elektromagnit induksiya.
O‘zinduksiya. O‘zaro induksiya.
2
-
4
13.
Geometrik optika. Umumiy
tushunchalar. Refraktometriya.
2
4
4
14.
Yorug‘likning to‘lqin asoslari
Yorug‘lik interferensiyasi.
Yorug‘lik dispersiyasi. Yorug‘likning yutilishi. Yorug‘likni
sochilishi.
Yorug‘likning
qutblanishi.
Polyarimetriya.
Issiqlik
nurlanishi
va
ularni
xarakteristikalari.
Yorug‘lik dualizmi. Harakatlanayotgan zarrachalar to‘lqin
xususiyati. De-Broyl gipotezasi.
Atomning tuzilishi. Rezerford
tajribasi.
Atomni
yadroviy
planetar modeli.
2
8
4
2
4
4
2
4
5
2
-
5
Yadro fizikasi.Yadro fizikasi
tushunchalari. Atom yadrosi.
Radioaktivlik.
2
4
4
36
72
74
15.
16.
17.
18.
7
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
ASOSIY QISM: FANNING USLUBIY JIHATDAN UZVIY KETMA - KETLIGI
Ma’ruza mavzulari
Ma’ruza 1
(2 soat)
Mexanikaning fizik asoslari. Umumiy tushunchalar. Kinematika.
Adabiyotlar: 1 –5 bob, 4, 5, 8.
Mustaqil ish mavzusi: Ko‘chish va yo‘l. To‘g‘ri chiziqli tekis harakat. Tekis, notekis,
tezlanuvchan, sekinlanuvchan harakat, tezlik va tezlanish, uning tashkil etuvchilari. Egri chiziqli
harakat va uni tavsiflovchi kattaliklar.
Ma’ruza 2
(2 soat)
Mexanikaviy tebranishlar va to‘lqinlar.
Adabiyotlar: 1 –5 bob, 4, 5, 8.
Mustaqil ish mavzusi: Jismlarning absolyut elastik va noelastik urilishi. Tortishish kuchlari. Butun
olam tortishish qonuni. Tortishish maydoni. Og‘irlik kuchi va vazn. Vaznsizlik. Kosmik tezliklar.
Qattiq jismlar mexanikasi. Inersiya va kuch momentlari. Qattiq jism aylanma harakat
dinamikasining tenglamasi. Qattiq jism deformatsiyasi. Qattiq jism muvozanati. Mayatniklar.
Garmonik tebranishlar va ularni xarakterlovchi fizik kattaliklar (siljish, tezlik, tezlanish). Ularning
differensial tenglamasi. So‘nuvchi tebranishlar, ularning parametrlari (siljish, so‘nishning
logarifmik dikrementi). Majburiy tebranishlar. rezonans. Fazoviy va gruppaviy tezliklar. To‘lqin
energiyasi oqimi. Doppler effekti. Turg‘un to‘lqinlar. To‘lqinlar interferensiyasi. Tovush to‘lqinlari.
Eshitish sohalari.
Ma’ruza 3
(2 soat)
Suyuqlik va gazlar mexanikasi. Suyuqlik va gazlarda bosim. Paskal va Arximed qonunlari.
Adabiyotlar: 1-12 bob, 4, 5, 8.
Ma`ruza 4
(2 soat)
Ideal gaz. Gazlar molekulyar kinetik nazariyasi asoslari.
Adabiyotlar: 1-12 bob, 4, 5, 8.
Ma`ruza 5
(2 soat)
Gaz molekulalarining tezlik-lari bo‘yicha taqsimoti Maksvell va Bolsman taqsi-moti
to‘g‘risida tushuncha.
Adabiyotlar: 1-12 bob, 4, 5, 8.
Mustaqil ish mavzusi:
Biologik sistemalar termodinamikasi. Ochiq sistemalar uchun
termodinamika qonunlari. Erkin energiya o`zgarishi. Ximik va elektroximik potentsial.Termodinamik
potensiallar. Standart erkin energiyaning o’zgarishi. Dissipativ funksiya va entropiya o’sish tezligi.
Statsionar holat barqarorligi va kriteriy darajasi. Prigojin tenglamasi.
Ma`ruza 6
(2 soat)
Termodinamika asoslari. Ish va issiqlik miqdori, issiqlik almashinuvi. Termo-dinamikaning
birinchi bosh qonuni.
Adabiyotlar: 1, 4, 5, 8 – II bob.
Ma`ruza 7
(2 soat)
Suyuqliklar, ularning mole-kulyar tuzilishining xususi-yatlari. Suyuqliklardagi ko‘chish
hodisalari.
Adabiyotlar: 1-9 bob, 4, 5, 8.
Mustaqil ish mavzusi: Djoul – Tomson effekti. Farmatsiya va tibbiyotda past temperaturalarning
qo’lanilishi. Suyuqliklar molekulyar tuzilishi o’ziga xosligi va umumiy xususiyatlari (diffuziya,
qovushqoq-lik, issiqlik o’tkazuvchanlik). Sirt aktiv moddalar va ularning qo’llanilishi. Kapillyar
8
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
bosim. Laplas formulasi. Qattiq, kristall va amorf jismlar. Biopolimerlar umumiy xususiyatlari va
tuzilisining o’ziga xosligi.
Ma`ruza 8
(2 soat)
Elektrostatika.
Adabiyotlar: 1-14 bob, 4, 5, 8.
Ma`ruza 9
(2 soat)
O‘zgarmas tok qonunlari. Tok kuchi va zichligi. Zanjirning bir qismi uchun Om qonuni.
Adabiyotlar: 1-15 bob, 4, 5, 8.
Mustaqil ish mavzusi: Dielektriklar polyarizatsiyasi (dipol yoki oriyentatsion, elektron, ion).
Plazma haqida tushuncha. Yarim o’tkazgichlarda elektr toki. Zonalar nazariyasi. Elektromagnit
to’lqinlar va ularning farmatsiya va tibbiyotda qo’llanilishi.
Ma`ruza 10
(2 soat)
Dielektriklar. Elektrik dipol. Dielektriklarning qutblanishi. Dielektriklar-ning turlari
Adabiyotlar: 1-15 bob, 4, 5, 8.
Mustaqil ish mavzusi: Dielektriklarni qutblanishi. Dielektriklarni turlari (qutblangan molekulalar
bilan; qutblanmagan molekulalar bilan; kristall, ya’ni ion tuzilishi bilan). Qutblanish (dipol, elektron,
ionli). Qutblanganlik. Dielektrik singdiruvchanlik. Plazma haqida tushuncha. Yarim o’tkazgichlarda
elektr toki. Yarim o’tkazgichlarning tuzilishi. Zonalar nazariyasi. r–tipidagi o’tkazuvchanlik. n–
tipidagi o’tkazuvchanlik.
Ma`ruza 11
(2 soat)
Magnitizm. Magnit maydon. Tokli kontur.
Adabiyotlar: 1-17 bob, 4, 5, 8.
Mustaqil ish mavzusi: Ularning qo’llanilishi (mass-spektroskopiya, tezlatgichlar).
Ma`ruza 12
(2 soat)
Elektromagnit induksiya. O‘zinduksiya. O‘zaro induksiya.
Adabiyotlar: 1-17 bob, 4, 5, 8.
Mustaqil ish mavzusi: Siljish toki. Maksvell tenglamalari.
Maksvell nazariyasini asosiy
tushunchalari.
Ma`ruza 13
(2 soat)
Geometrik optika. Umumiy tushunchalar. Refraktometriya.
Adabiyotlar: 1,26 bob, 4, 5, 9.
Mustaqil ish mavzusi: Ko’rish biofizikasi. Ko’rishning molekulyar mexanizmi.
Ma`ruza 14
(2 soat)
Yorug‘likning to‘lqin asoslari. Yorug‘lik interferensiyasi. Yorug‘lik dispersiyasi. Yorug‘likning
yutilishi. Yorug‘likni sochilishi.
Adabiyotlar: 1,26 bob, 4, 5, 9.
Mustaqil ish mavzusi: Vulf –Bregg formulasi. Rentgenostruktur analiz asoslari. Golografiya haqida
tushuncha.
Ma`ruza 15
(2 soat)
Yorug‘likning qutblanishi. Polyarimetriya. Issiqlik nurlanishi va ularni xarakteristikalari.
Adabiyotlar: 1,26 bob, 4, 5, 9.
Mustaqil ish mavzusi: Yorug’likning sochilishi (Tindal hodisasi, molekulyar sochilish. Reley qonuni.
Nefelometriya). Nurlanishlarning qo’llanlishi.
Ma`ruza 16
(2 soat)
Yorug‘lik dualizmi. Harakatlanayotgan zarrachalar to‘lqin xususiyati. De-Broyl gipotezasi.
9
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Adabiyotlar: 1,13 bob, 4, 5, 9.
Mustaqil ish mavzusi: Harakatlanayotgan zarrachalar to’lqin xususiyati. De Broyl gipotezasi.
Elektron, neytron va boshqa zarrachalar difraksiyasi. Elektron mikroskop va ularning qo’llanilishi).
Majburiy (induksiyalangan) nurlanish haqida tushuncha. Lazerlar va ularni qo’llanishi.
Ma`ruza 17
(2 soat)
Atomning tuzilishi. Rezerford tajribasi. Atomni yadroviy planetar modeli.
Adabiyotlar: 1, 4, 5, 9 – II bob.
Ma`ruza 18
(2 soat)
YAdro fizikasi.YAdro fizikasi tushunchalari. Atom yadrosi. Radioaktivlik.
Adabiyotlar: 1, 4, 5, 9 – II bob.
Mustaqil ish mavzusi: Nishonli atomlar, belgilar va ularning qo’llanilishi. Elementar zarrachalar.
Zarralarni qayd qilishning amaliy usullari. Tezlatkichlar. Yadro reaktori.
Amaliy mashg‘ulotlarni tashkil etish bo‘yicha mavzular, ko‘rsatma va tavsiyalar
№
Amaliy mashg‘ulotlarning nomi va mazmuni
1
Kirish. Xatoliklar va ularni hisoblash.
Ajratilgan
soat
2
2
Bajarilgan ishlar hisoboti. YAkuniy nazorat.
2
Adabiyotga
ko‘rsatma
1,3,4 va h.k.
1,3,4 va h.k.
Laboratoriya mashg‘ulotlarini tashkil etish bo‘yicha mavzular, ko‘rsatma va tavsiyalar
№
1
Laborotoriya mashg‘ulotlarning nomi va mazmuni
Analitik tarozida tortishni o‘rganish.
Ajratilgan
soat
4
Adabiyotga
ko‘rsatma
1,3,4 va h.k.
2
Geometrik shaklga ega bo‘lgan qattiq jismlar zichligini
aniqlash.
2
1,3,4 va h.k.
3
Suyuqlik sirt taranglik koeffitsientini halqa uzilish usuli
bilan aniqlash.
2
1,3,4 va h.k.
4
Suyuqlik va sochiluvchan qattiq jismlarning zichligini
piknometr yordamida aniqlash.
2
1,3,4 va h.k.
5
Stoks usuli bilan suyuqliklarning yopishqoqlik koeffisientini
aniqlash.
2
1,3,4 va h.k.
10
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
6
Biologik suyuqliklarning yopishqoqlik koeffitsien-tini VK-4
viskozimetri yordamida aniqlash.
2
1,3,4 va h.k.
7
Havo molekulalarining o‘rtacha erkin yugurish yo‘li va ichki
ishqalanish koeffitsientini aniqlash.
4
1,3,4 va h.k.
8
Halqaning tebranishidan jismlarning erkin tushish tezlanishi
aniqlash.
2
1,3,4 va h.k.
9
Suyuqlikning sirt taranglik koeffitsientini tomchi uzilishi
usuli bilan aniqlash.
4
1,3,4 va h.k.
10
Jismlarning
aniqlash.
bilan
2
1,3,4 va h.k.
11
Matematik mayatnik yordamida jismlarning erkin tushish
tezlanishini aniqlash.
2
1,3,4 va h.k.
12
Osvald
viskozimetri
yordamida
yopishqoqlik koeffitsientini aniqlash.
suyuqliklarning
2
1,3,4 va h.k.
13
O‘zgarmas bosim va o‘zgarmas hajmdagi issiqlik sig‘mlari
nisbatini aniqlash.
2
1,3,4 va h.k.
14
Havoning nisbiy namligini Assman psixrometri yordamida
aniqlash.
2
1,3,4 va h.k.
15
Gey-Lyussak qonuni yordamida absolyut nol haroratni
aniqlash.
2
1,3,4 va h.k.
16
Boyl-Mariott qonunini tajribada o‘rganish.
2
1,3,4 va h.k.
17
Refraktometr yordamida eritmalarning konsentratsiyasini va
nur sindirish ko‘rsatkichini aniqlash.
4
1,3,4 va h.k.
18
Fotokolorometrda rangli suyuqliklarning konsentratsiyasini
aniqlash.
2
1,3,4 va h.k.
2
1,3,4 va h.k.
2
1,3,4 va h.k.
19
20
zichligini
gidrostatik
tortish
usuli
Fotoelementning integral sezgirligini aniqlash.
Difraksion panjara
uzunligini aniqlash.
yordamida
yorug‘likning
to‘lqin
21
Elektrostatik maydonni o‘rganish.
2
1,3,4 va h.k.
22
Yоrug‘likning qutblanishini o‘rganish.
4
1,3,4 va h.k.
23
Amper qonunini o‘rganish.
2
1,3,4 va h.k.
2
1,3,4 va h.k.
24
Yorug‘lik to‘lqin uzunligini Nyuton halqalari yordamida
aniqlash.
11
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
25
Spektroskopni darajalash va uning yordamida yorug‘likning
to‘lqin uzunligini aniqlash.
2
1,3,4 va h.k.
26
Shishaning sindirish ko‘rsatkichini aniqlash.
2
1,3,4 va h.k.
27
Radioaktiv yadrolarning yarim emrilish davrini aniqlash.
2
1,3,4 va h.k.
28
Gazlar issiqlik sig‘imlari nisbatini “Kleman-Dezorma”
stendi yordamida aniqlash.
2
1,3,4 va h.k.
29
Yerning magnit maydon kuchlanganligining gorizontal
tashkil etuvchisi aniqlash.
2
1,3,4 va h.k.
KURS ISHLARINING NAMUNAVIY MAVZULARI: ( rejalashtirilmagan)
MALAKAVIY AMALIYOT: (rejalashtirilmagan)
Mustaqil ta’limni tashkil etishning shakli va mazmuni
Talaba mustaqil ishining asosiy maqsadi – o‘qituvchining rahbarligi va nazorati ostida
muayyan o‘quv ishlarini mustaqil ravishda bajarish uchun bilim va ko‘nikmalarni shakllantirish va
rivojlantirish.
Talaba mustaqil ishini tashkil etishda quyidagi shakllardan foydalaniladi:
 ayrim nazariy mavzularni o‘quv adabiyotlari yordamida mustaqil o‘zlashtirish;
 berilgan mavzular bo‘yicha axborot (referat) tayyorlash;
 nazariy bilimlarni amaliyotda qo‘llash;
 avtomatlashtirilgan o‘rgatuvchi va nazorat qiluvchi tizimlar bilan ishlash;
 ilmiy maqola, anjumanga ma’ruza tayyorlash va h.k.
Toshkent farmatsevtika institutining “Talaba mustaqil ishini tashkil etish, nazorat qilish va
baholash” to‘g‘risidagi Nizom O‘zbekiston Respublikasi OO‘MTVning 2005 yil 21 fevral 34buyrug‘i bilan tasdiqlangan Namunaviy Nizom asosida ishlab chiqilgan. Talabaning mustaqil ishi
o‘quv rejasida muayyan fanni o‘zlashtirish uchun belgilangan o‘quv ishlarini ajralmas qismi
hisoblanadi, kafedrada uslubiy va axborot resurslari jihatidan ta’minlanadi. Talabalarning mustaqil
ishi reyting tizimi talabalari asosida nazorat qilinadi. Talaba mustaqil ishining umumiy xajmi 74
soatni tashkil qiladi.
O‘quv semestri yakunida talabaning mustaqil ishi joriy, oraliq va yakuniy nazoratlar jarayonida
tegishli topshiriqlarni bajarishi va unga ajratilgan ballardan kelib chiqqan holda baholanadi. Talaba
mustaqil ishni tayyorlashda fanning mavzular hususiyatlarini hisobga olgan holda quyidagi
shakllardan foydalanish tavsiya etiladi:
1. Ko‘chish va yo‘l. To‘g‘ri chiziqli tekis harakat. Tekis, notekis, tezlanuvchan,
sekinlanuvchan harakat, tezlik va tezlanish, uning tashkil etuvchilari. Tortishish kuchlari.
Butun olam tortishish qonuni. Tortishish maydoni. Og‘irlik kuchi va vazn. Vaznsizlik. Kosmik
tezliklar. Qattiq jismlar mexanikasi. Inersiya va kuch momentlari. Qattiq jism aylanma harakat
dinamikasining tenglamasi. Qattiq jism deformatsiyasi.
12
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
2. So‘nuvchi tebranishlar, ularning parametrlari Majburiy tebranishlar. Rezonans.
Ultratovush. Ultratovush manbalari. Ultratovush jism bilan o‘zaro ta’sir xususiyatlari. Biologik
to‘qima va qattiq jismlarning mexanik xususiyatlari.
3. To‘lqinlar. To‘lqin tenglamasi. To‘lqin soni. Fazoviy va gruppaviy tezliklar. To‘lqin
energiyasi oqimi. Umov vektori. Doppler effekti. Turg‘un to‘lqinlar. To‘lqinlar interferensiyasi.
4. Djoul – Tomson effekti. Farmatsiya va tibbiyotda past temperatura qo‘llanilishi. Sirt aktiv
moddalar va ularning farmatsiyada qo‘llanilishi. Kapillyar bosim. Laplas formulasi. Qattiq, kristall va
amorf jismlar. Biopolimerlar, umumiy xususiyatlari va tuzilishining o‘ziga xosligi.
5. Sikl. Isitish va sovitish mashinalari. Karno sikli.
6. Termodinamik potensiallar. Standart erkin energiyaning o‘zgarishi. Dissipativ funksiya va
entropiya o‘sish tezligi. Statsionar holat barqarorligi va kriteriy darajasi. Prigojin tenglamasi.
7. Qattiq jismlar. Kristal va amorf qattiq jismlar. Polimerlar. Suyuq kristallar. Qattiq jism va
organizm to‘qimalarining mexanikaviy xossalari.
8. Plazma xaqida tushuncha. YArim o‘tkazgichlarda elektr toki. YArim o‘tkazgichlarda elektr
toki. YArim o‘tkazgichlarni tuzilishi. Zonalar nazariyasi. r–tipidagi o‘tkazuvchanlik. n–tipidagi
o‘tkazuvchanlik. Elektromagnit to‘lqinlar va ularning farmatsiya va tibbiyotda qo‘llanilishi.
9. Organik molekulalarning tebranma va aylana spektrlari.
Meditsina va farmatsiyada
fotolyuminession miqdor va sifat tahlillari. EPR, Xemilyuminessensiya, YAMR.
10. Turli muhitlarda elektr toki. Gazlarda elektr toki. Mustaqil va nomustaqil razryadlar.
Suyuqliklarda elektr toki. Elektrolitlar. Elektroliz. Elektrolitik dissotsiatsiya. Elektroliz uchun
Faradey qonunlari. Elektrolizni qo‘llanilishi.
11. Qon aylanish sistemalari biofizikasi. Qonning reologik va gemodinamik xarakteristikalari.
Eritrotsitlar cho‘kish tezligi. Frank modeli.
12. Hujayra biofizikasi. Membrananing suyuq kristall holati. Qo‘zg‘algan membrananing
ekvivalent elektrik sxemasi. Nerv impulsining tarqalishi. Elektrokinetik hodisalar.
13. Ko‘rish biofizikasi. Ko‘rishning molekulyar mexanizmi. Elektron mikroskop va ularning
qo‘llanilishi.
14. Elektronlar, neytron va boshqa zarrachalar difraksiyasi. Radioaktiv emirilishlar. Nishonli
atomlar, qo‘llanilishi.
15. Biosfera va fizik maydon. Atrof muhit va insonning fizik maydoni.
16. Biologik membranalar.
Biologik membranalar, ularning funksiyasi va asosiy holatlari.
Biolipidli membrana (BLM) modeli. Liposoma. Biomembranalar dinamikasi. Lipid molekulalarning
membranadagi harakatchanligi. Lipid va oqsil molekulalarining diffuziyasi (lateral va flip-flop). Gelsuyuq kristall tipidagi lipid qo‘sh qatlamining mikroyopishqoqligi. Membranalar patologiyasi.
Membranalarda fazoviy o‘tishlar.
17. Moddalar transporti. Moddalarning biologik membranalar orqali transporti. Passiv va aktiv
transport. Gradient bo‘yicha va gradientga qarshi bo‘ladigan jarayonlar. Passiv transport va uning
turlari: oddiy va engillashgan diffuziya, osmos, filtratsiya. Aktiv transport. Ussing tajribasi.
Elektrogen ion nasoslari.
18. Bioelektrik potensiallar, ularning turlari. Tinchlik potensiali. Biopotensiallarni qayd qilishning
fizik usullari. Mikroelektrod usuli. Nernst-Plank tenglamasining echimi. Goldman-Xodjkin
tenglamasi. Nerv impulsi biofizikasi. Harakat potensiali. O‘rganish usullari. Kuchlanishning
fiksatsiya qilish usuli. Qo‘zg‘aluvchi membranalar ekvivalent elektr sxemalari. Xodjikin-Xaksli
tenglamalari. Organlarning elektroaktivligi.
13
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Fanni o‘qitishda qo‘llaniladigan axborot va pedagogik texnologiyalar
Talabalarga fizika fanini o‘qitishda
kompyuter, axborot va boshqa zamonaviy
texnologiyalarni qo‘llab, bilimini oshirish va shu orqali Kadrlar tayyorlash milliy dasturi talablariga
javob beradigan ilmiy salohiyati etuk mutaxassis kadrlar tayyorlash jarayonini amalga oshirish.
O‘qitish jarayonida o‘quv dasturlarini kompyuter orqali o‘qitishni joriy etish, laboratoriya ishlarini
bajarishda olingan natijalarga kompyuterdan foydalanib Basic, exsel va Pascal tillarida tuzilgan
dasturlar asosida matematik ishlov berish, turli biotexnologik jarayonlarni modellash va ularni
kompyuter vositasida echish.
Fizika fanidan oraliq va yakuniy nazorat savollari
1) Mexanikaning fizik asoslari. Umumiy tushunchalar. Kinematika.Mehanik harakat.(sanoq
sistemasi, ko‘chish, masofa, tezlik, tezlanish) Aylanma harakat. (burchak va chiziqli tezlik, burchak
tezlanish, aylanish davri va chastotasi.)
2) Dinamika qonunlari. Nyutonning 1-qonuni. Inertlik, inersion sanoq sistemasi, massa, kuch.
Nyutonning 2- qonuni. Harakat miqdori. Jism impulsi o‘zgarishi. 2-qonunni impuls orqali ko‘rinishi.
Nyutonning 3-qonuni.
3) Saqlanish qonunlari (energiya, impuls). Ish, quvvat. Kuch momenti. Impuls momenti.
Inersiya momenti. Aylanma harakat uchun Nyutonning 3-qonuni.
4) Mexanik tebranishlar. Mayatniklar. Garmonik tebranishlar va ularni xarakterlovchi fizik
kattaliklar (siljish, tezlik, tezlanish). Ularning differensial tenglamasi. mayatniklar. Erkin tushish
tezlanishini aniqlash usuli. Garmonik tebranish energiyasi
5) So‘nuvchi tebranishlar, ularning parametrlari siljish, so‘nishning logarifmik dikrementi.
Majburiy tebranishlar. Rezonans.
6) To‘lqinlar. To‘lqin tenglamasi. To‘lqin soni. Fazoviy va gruppaviy tezliklar. To‘lqin
energiyasi oqimi. Umov vektori. Akustika. Ultratovush va qo‘llanilishi. Doppler effekti. Tovush
to‘lqinlari. Eshitish sohalari.
7) Suyuqlik va gazlar mexanikasi. Suyuqlik va gazlarda bosim. Paskal va Arximed qonunlari.
8) Gidrodinamika. Ideal suyuqlik. Statsionar oqim. SHalolaning uzuliksizlik sharti. Oqim
tezligini o‘zgarishi. Bernulli va Torrichelli tenglamalari.
9) YOpishqoqlik (ichki ishqalanish). Nyuton tenglamasi. YOpishqoq suyuqliklarni trubadan
oqishi. Puazeyl formulasi. Jismlarning yopishqoq suyuqliklarda harakati. Stoks qonuni.
YOpishqoqlikni aniqlash usullari. Laminar va turbulent oqim. Reynolds soni. YOpishqoqlikni
o‘lchash usullari.
10) Molekulyar fizika. Gazlar molekulyar kinetik nazariyasi asoslari. Ideal gaz va uning
parametrlari. Molekulalararo o‘zaro ta’sir kuchlari va ularning energiyasi (moddaning agregat
holatlari).
11) Izojarayonlar. Holat tenglamasi. Molekulyar kinetik nazariyaning asosiy tenglamasi. Gaz
molekulalari o‘rtacha kvadrat tezligi. Gaz molekulalarining ilgarilanma xarakat o‘rtacha kinetik
energiyasi. Erkinlik darajasi. Erkinlik darajasi bo‘yicha energiyani tekis taqsimlanishi. Ideal gaz ichki
energiyasi.
12) Gaz molekulalarining tezliklari bo‘yicha taqsimoti (Maksvel taqsimoti). Bolsman taqsimoti
to‘g‘risida tushuncha. Molekulalar orasidagi o‘zaro tuqnashuvlar. Molekulalarning o‘rtacha erkin
yugurish yo‘li.
13) Termodinamika elementlari. Termodinamika asoslari. Ish va issiqlik miqdori, issiqlik
almashinuvi. Termodinamikaning birinchi bosh qonuni. Termodinamika birinchi qonunining
izojarayonlarga tadbiqi. Ideal gazning issiqlik sig‘imi.
14
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
14) Qaytuvchi va qaytmas jarayonlar. Sikl. Isitish va sovitish mashinalari. Karno sikli.
Termodinamikaning ikkinchi qonuni. Entropiya.
15 Gazlarda ko‘chish hodisalari. Ko‘chishning umumiy tenglamasi. Gazlarda diffuziya
hodisasi. Gazlarda issiqlik o‘tkazuvchanligi. Gazlarda yopishqoqlik (ichki ishqalanish hodisasi).
16) Real gazlar. Gaz molekulalari o‘rtasidagi ta’sir. Van-der-Vals tenglamasi. Real gazning
ichki energiyasi.
17) Bug‘lanish va kondensatsiya. To‘yingan bug‘. Van-der-Vaals izotermalari. Gazlarni
suyultirish, ularning qo‘llanilishi (tibbiyot va farmatsiya).
18) Qattiq jismlar. Kristall va amorf qattiq jismlar. Polimerlar. Suyuq kristallar. qattiq jism va
organizm to‘qimalarining mexanikaviy xossalari.
19) Suyuqliklar, ularning molekulyar tuzilishining xususiyatlari. Suyuqliklardagi ko‘chish
hodisalari. Sirt taranglik.
Molekulyar bosim. Sirt qatlam energiyasi. Egri sirt otsidagi bosim. Kapillyarlik. Sirt
taranglikni o‘lchash usullari.
20) Elektrodinamika asoslari. Elektrostatika. Elektr maydon. Elektr zaryadi. Umumiy
tushunchalar. Kulon qonuni. Elektrostatik maydon va uning kuchlanganligi. Elektr maydon
potensiali. Potensiallar farqi. Kuchlanish.
Elektr maydon kuchlanganligi va kuchlanish orasidagi bog‘lanish. Ekvipotensial sirtlar.
Ostragradskiy – Gauss teoremasi.
21) O‘zgarmas tok qonunlari. Tok kuchi va zichligi. Zanjirning bir qismi uchun Om qonuni.
O‘tkazgichning qarshiligi. Elektr o‘tkazuvchanlik. O‘tkazgich qarshiligining temperaturaga
bog‘liqligi. Solishtirma qarshilik. Solishtirma elektr o‘tkazuvchanlik. Birliklari. To‘la zanjir uchun
Om qonuni. O‘tkazgichlarni ketma-ket va parallel ulash. Kirxgof qonunlari. Elektr tokining issiqlik
ta’siri. Joul–Lens qonuni. Tokning ishi va quvvati.
22) Elektr tokini issiqlik ta’siri. Joul –Lens qonuni. Elektr tokining ishi va quvvati.
23) Dielektriklar. Elektrik dipol. Dielektriklarni qutblanishi. Dielektriklarni turlari qutblangan
molekulalar bilan; qutblanmagan molekulalar bilan; kristal, ya’ni ion tuzilishi bilan.
Qutblanish (dipol, elektron, ionli). Qutblanganlik. Dielektrik singdiruvchanlik.
24) Metallarda elektr toki. Emissiya hodisalari va ularni qo‘llanilishi.
25) Gazlarda elektr toki. Mustaqil va nomustaqil razryadlar. Plazma haqida tushuncha.
26) Suyuqliklarda elektr toki. Elektrolitlar. Elektroliz. Elektrolitik dissotsiatsiya. Elektroliz
uchun Faradey qonunlari. Elektrolizni qo‘llanilishi.
27) YArim o‘tgazgichlarda elektr toki. YArim o‘tgazgichlarni tuzilishi. Zonalar nazariyasi. R –
tipidagi o‘tkazuvchanlik. n – tipidagi o‘tkazuvchanlik.
28) Magnitizm. Magnit maydon. Tokli kontur. Magnit induksiya vektori. Magnit oqim.
Birliklari. Bio-Savar-Laplas qonuni. Amper qonuni. Magnit maydonining harakatlanayotgan
zaryadga ta’siri. Lorens kuchi. Ularning qo‘llanilishi (mass-spektroskopiya, tezlatgichlar). Muhitning
magnit singdiruvchanligi. Dio-para va ferromagnetizmlar.
29) Elektromagnit induksiya hodisasi. Faradey tajribalari. Lens qoidasi. Kontur induktivligi.
Uzinduksiya. O‘zaro induktsiya. Elektromagnit tebranishlar. Magnitoelektr induksiya hodisasi.
Elektromagnit maydon. Umov – Poyting vektori.. O‘zgaruvchan tok.
30) O‘zgaruvchan tok zanjirida aktiv, sig‘im va induktiv qarshiliklar. O‘zgaruvchan tok zanjiri
uchun Om qonuni.
31) Geometrik optika. Umumiy tushunchalar. Refraktometriya (tola optikasi va ularning
qo‘llanilishi).
15
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
32) YOrug‘likning to‘lqin asoslari. YOrug‘lik interferensiyasi. YOrug‘lik to‘lqinining
kogerentligi. YOrug‘lik difraksiyasi. Gyuygens – Frenel prinsipi. Difraksion panjara. Difraksion
spektr. Vulf –Bregg formulasi. Rentgenostruktur analiz asoslari.
33) YOrug‘likning qutblanishi.
Tabiiy va qutblangan yorug‘lik. Polyarizator va analizator. Malyus qonuni. YOrug‘likning
qaytishi va sinishdagi qutblanish. Bryuster qonuni.
34) Polyarimetriya. YOrug‘likning modda bilan ta’siri. YOrug‘lik dispersiyasi. Dispersiya
spektri. YOrug‘likning yutilishi. Buger–Lambert–Ber qonuni. Kolorimetriya. YOrug‘likni sochilishi
Tindal hodisasi, molekulyar sochilish. Reley qonuni.
35) Jismlarning issiqlikdan nurlanishi.
Issiqlik nurlanishi va ularning xarakteristikalari. Absolyut qora jism. Kirxgof qonuni.
Absolyut qora jism nurlanish qonuniyatlari Plank gipotezasi. Plank formulasi. Stefan – Bolsman
qonuni. Vinning siljish qonuni. Nurlanishlarning qo‘llanlishi.
36) Kvant mexanikasi elementlari.
YOrug‘lik dualizmi. Harakatlanayotgan zarrachalar to‘lqin hususiyati. De - Broyl gipotezasi.
Bor postulatlari. Elektron, neytron va boshqa zarrachalar difraksiyasi. Elektron mikroskop. Ularning
qo‘llanilishi.
37) Fotoefekt. YOrug‘likni korpuskulyar hususiyatlari. Foton. Eynshteyn tenglamasi.
Fotoefektning qizil chegarasi.
38) Noaniqlik munosabatlari. Atom sistemasini xarakterlovchi kvant sonlar. Pauli prinsipi.
Vodorod spektridagi asosiy qonuniyatlar. Majburiy (induksiyalangan) nurlanish haqida tushuncha
39) Atomning tuzilishi (Atomni Tomson modeli. Rezerford tajribasi. Atomni yadroviy planetar
modeli.).
40) YAdro fizikasi tushunchalari. Atom yadrosi. Zaryad, massa va yadro radiusi. Radioaktivlik.
Preparatlar aktivligi. Radioaktiv emirilishlar. (alfa, betta, gamma) YAdro reaksiyalari. Nishonli
atomlar, belgilar. Ularni qo‘llanilishi.
BAHOLASH MEZONLARI
Talabalarning fan bo‘yicha o‘zlashtirishini baholash semestr davomida muntazam ravishda olib
boriladi va quyidagi turlar orqali amalga oshiriladi:
joriy baholash (JB)
oraliq baholash (OB)
talabaning mustaqil ishi (TMI)
yakuniy baholash (YAB)
Har bir fan b’yicha talabaning semestr davomidagi o‘zlashtirish ko‘rsatkichi 100 ballik tizimda
baholanadi.
Ushbu 100 ball baholash turlari bo‘yicha quyidagicha taqsimlanadi:
№
Baholash turi
1
2
3
4
Joriy baxolash
Talabaning mustaqil ishi
Oraliq baholash
YAkuniy baholash
JAMI
Maksimal ball
Saralash bali
45
5
20
30
100
27
3
11
17
58
16
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Talabaning fan bo‘yicha to‘plagan umumiy bali har-bir baholash turlarida to‘plagan ballar
yig‘indisiga teng bo‘ladi.
Joriy baholash (JB)
JBda fanning har bir mavzusi bo‘yicha talabaning bilimi va amaliy ko‘nikmalarini aniqlab
borish ko‘zda tutiladi va u amaliy, seminar yoki laboratoriya mashg‘ulotlarida amalga oshiriladi.
Baholashda talabaning bilim darajasi, amaliy mashg‘ulot materiallarini o‘zlashtirishi, nazariy
material muhokamasida va ta’limning interaktiv uslublarida qatnashishning faollik darajasi,
shuningdek amaliy bilim va ko‘nikmalarni o‘zlashtirish darajasi (ya’ni nazariy va amaliy
yondashuvlar) hisobga olinadi.
JB har bir fanning hususiyatlaridan kelib chiqqan holda og‘zaki, yozma ish, test yoki ularning
kombinatsiyasi shaklida amalga oshiriladi.
Talabalar fizika fanidan har kuni baholanib, o‘rtachasi to‘rtinchi darsga qo‘yiladi. Semestr
davomida har bir talaba jami 9 marotaba baholanib, 10 ustunga mustaqil ish bahosi qo‘yiladi.
Talaba bilimini baholash tartibi
Talabaning ballarda ifodalangan o‘zlashtirishi quyidagicha baholanadi: har bir JB da talaba
maksimal 5 ball oladi. 9 ta JB fan bo‘limlaridan o‘tkaziladi va jami maksimal 45 ball xisobidan
o‘zlashtirish baholari quyidagi jadvaldan aniqlanadi.
O‘zlashtirish, %
Ballar
86-100
71-85
56-70
56 dan kam
№
Ballar
39-45
32-39
25-32
25 dan kam
Baho
1
39- 45
A’lo“5”
2
32-39
YAxshi“4”
3
25-32
qoniqarli“3”
4
25 dan kam
qoniqarsiz “2”
Baho
“5” a’lo
“4” yaxshi
“3”qoniqarli
“2” qoniqarsiz
Talabaning bilim darajasi
Talabalar ma’ruza va amaliyot bo‘yicha xulosa va qaror
qabul qilishi, ijobiy fikrlay olishi, mustaqil mushohada yurita
olishi, olgan bilimlarini amalda qo‘llay olishi, mohiyatini
tushunishi, bilishi, aytib berishi, tasavvurga ega bo‘lishi
lozim.
Talabalar ma’ruza va amaliyot bo‘yicha mustaqil
mushohada yurita olishi, olgan bilimlarini amalda qo‘llay
olishi, mohiyatini tushunishi, bilishi, aytib berishi;
tasavvurga ega bo‘lishi lozim.
Talabalar ma’ruza va amaliyot bo‘yicha olgan bilimlarini
mohiyatini tushunish, bilishi, aytib berishi, tasavvurga ega
bo‘lishi lozim
Talabalar ma’ruza va amaliyot bo‘yicha olgan bilimlarini
mohiyatini tushunmasa, aniq tasavvurga ega bo‘lmasa,
bilmasa.
17
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Talabaning mustaqil ishi (TMI)
Toshkent farmatsevtika institutining “Talaba mustaqil ishini tashkil etish, nazorat qilish va
baholash” to‘g‘risidagi Nizom O‘zbekiston Respublikasi OO‘MTVning 2005 yil 21 fevral 34 buyrug‘i bilan tasdiqlangan Namunaviy Nizom asosida ishlab chiqilgan.
Talabaning mustaqil ishi o‘quv rejasida muayyan fanni o‘zlashtirish uchun belgilangan o‘quv
ishlarini ajralmas qismi hisoblanadi, kafedrada u uslubiy va axborot resurslari jihatidan ta’minlanadi.
Talabalarning mustaqil ishi reyting tizimi talablari asosida nazorat qilinadi.
Talabaning jami mustaqil ishining umumiy xajmi 74 soatni tashkil qiladi.
O‘quv semestri yakunida talabaning mustaqil ishi joriy, oraliq va yakuniy nazoratlar jarayonida
tegishli topshiriqlarni bajarishi va unga ajratilgan ballardan kelib chiqqan holda baholanadi. (Ilova 1)
Talaba mustaqil ishni tayyorlashda fanning mavzular xususiyatlarini hisobga olgan holda
quyidagi shakllardan foydalanish tavsiya etiladi:
 darslik va o‘quv qo‘llanmalar bo‘yicha fan boblari va mavzularini o‘rganish;
 tarqatma materiallar bo‘yicha ma’ruzalar qismini o‘zlashtirish;
 maxsus adabiyotlar bo‘yicha fanlar bo‘limlari yoki mavzulari ustida ishlash;
 yangi texnologiyalarni, apparaturalarni, jarayonlar va texnologiyalarni o‘rganish;
 talabaning o‘quv, ilmiy-tadqiqot ishlarini bajarish bilan bog‘liq bo‘lgan fanlar
bo‘limlari va mavzularini chuqur o‘rganish:
 faol va muammoli o‘qitish uslubidan foydalaniladigan o‘quv mashg‘ulotlarini o‘tkazish
masofaviy ta’lim.
TMI ning o‘zlashtirishi quyidagicha baholanadi. Maksimal ball 5.
O‘zlashtirish, %
86-100
71-85
56-70
55 dan kam
Ballar
5
4
3
3 dan kam
Baho
“5” a’lo
“4” yaxshi
“3”qoniqarli
“2” qoniqarsiz
Oraliq baholash (OB)
OB da fanning bir necha mavzularini qamrab olgan bo‘limi yoki qismi bo‘yicha mashg‘ulotlar
o‘tib bo‘lingandan so‘ng, talabaning nazariy bilimlari baholanadi va unda talabaning muayyan
savolga javob berish yoki muammoni echish qobiliyati aniqlanadi.
OB ikki marta kalendar rejaga asosan o‘tkaziladi. OBga o‘quv mashg‘ulotlaridan qarzi
bo‘lmagan talabalar qo‘yiladi.
OB da talabaning o‘zlashtirishi quyidagicha baholanadi. Maksimal 20 ball.
18
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
O‘zlashtirish, %
Ballar
86-100
71-85
56-70
56 dan kam
Baho
“5” a’lo
“4” yaxshi
“3”qoniqarli
“2” qoniqarsiz
17-20
14 – 17
11– 14
11 dan kam
OB kafedra majlisi qarori bilan yozma ish shaklida o‘tkaziladi. OB bo‘yicha belgilangan
maksimal reyting balining 11 dan kam ball to‘plagan talaba YABga qo‘yilmaydi.
YAkuniy baholash (YAB)
YAB da talabaning bilim, ko‘nikma va malakalari fanning umumiy mazmuni doirasida
baholanadi. YAB fan bo‘yicha o‘quv mashg‘ulotlari tugaganidan so‘ng o‘tkaziladi.
JB, TMI va OB ga ajratilgan umumiy ballarning har biridan saralash balini to‘plagan talabaga
YAB ga ishtirok etishga huquq beriladi.
YAB o‘tkazish shakli – test, yozma ish shaklida, Ilmiy Kengash qarori bilan belgilanadi.
JB, OB va YAB turlarida fanni o‘zlashtira olmagan (56 dan kam ball to‘plagan) yoki uzrli
sabablar bilan baholash turlarida ishtirok eta olmagan talabalarga quyidagi tartibda qayta
baholashdan o‘tishga ruxsat beriladi:
qoldirilgan amaliy mashg‘ulot kelgusi darsga qadar guruh o‘qituvchisiga qayta topshirish va
maslahat kunida topshiriladi. 3 ta mashg‘ulotni qoldirgan talaba fakultet dekani ruxsati bilan qayta
topshiradi;
OB ni 2 hafta muddatda qayta topshirishga ruxsat beriladi va bali koeffitsientsiz qayd etiladi;
semestr yakunida fan bo‘yicha saralash balidan kam ball to‘plagan talabaning o‘zlashtirishi
qoniqarsiz (akademik qarzdor) hisoblanadi.
akademik qarzdor talabalarga semestr tugaganidan keyin dekan ruxsatnomasi asosida qayta
o‘zlashtirish uchun – 2 hafta muddat beriladi. SHu muddat davomida o‘zlashtira olmagan talaba
belgilangan tartibda rektorning buyrug‘i bilan talabalar safidan chetlashtiriladi (birinchi kurs
talabalariga o‘quv yili yakunlari bo‘yicha amalga oshirish maqsadga muvofiqdir).
Namuna:
№ F.I.SH.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
2
+
+
+
+
+
+
5
3
+
+
+
+
+
+
5
3
+
+
+
+
+
+
4
3
+
+
+
+
+
+
4
3
+
+
+
+
+
+
5
3
+
+
2
2
+
+
23
24
25
26
27
28
29
30
31
32
33
34
35
36
mi
JN
ON
YN
Jami
+
+
4
3
+
+
+
+
+
+
4
3
+
+
+
+
+
+
5
3
+
+
+
+
+
+
5
3
5
3
46
30
15
11
25
17
86
58
Abidova F
Axmedo A
№ F.I.SH.
1
2
Abidova F
Axmedo A
19
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Atamalar lug‘ati (Glossariy)
Atom fizikasi - atom va u bilan bog‘liq hodisalar fizikasini o‘rganuvchi fan.
YAdro fizikasi - atom yadrosi tuzilishi, xossalari va bir - biriga aylanishlarini o‘rganadi.
Kvant fizikasi - mikrozarrachalar va ulardan tashkil topgan sistemalarning harakat qonunlarini
bayon etish usullarini ifodalovchi zamonaviy nazariya.
Zarra- to‘lqin dualizmi- barcha mikrozarrachalar korpuskulyar xususiyatiga ega bo‘lishi
bilan birgalikda to‘lqin xususiyatiga ham ega bo‘ladi.
Geyzenberg (tengsizliklar) noaniqliklar munosabati- mikrozarrachalarning impuls va
koordinatasini bir vaqtning o‘zida katta aniqlik bilan o‘lchab bo‘lmaydi.
Bosh kvant soni - n = 1,2,3...N asosan atomning diskret energetik sathlarini aniqlaydi.
Orbital kvant soni - l = 0,1,2...n – 1 bu kvant soni bilan elektronning orbital impuls momenti
aniqlanadi.
Magnit kvant soni – Ml= 0, ±1,±2,…± l orbital momentining (masalan:magnit maydon bilan)
ruxsat etilgan vaqtda yo‘nalish bo‘yicha proeksiyasini aniqlaydi.
Spin kvant soni – S= ±1/2 elektronning xususiy impuls momenti (spin)ni aniqlaydi.
Spontan nurlanish - atomlarning o‘z-o‘zidan yuqori energetik holatlaridan patski energetik
holatlarga o‘tishi natijasida hosil bo‘ladigan nurlanish.
Majburiy nurlanish - atomlari (molekulalari, ionlari ) pastki energetik holatdan biror tashqi
ta’sir (foton yutishi) natijasida, ya’ni uyg‘ongan holatlardan majburan o‘tishidagi nurlanish.
Metastabil holatlar- bunda ayrim moddalarning atomlarida shunday uyg‘ongan holatlar borki,
atomlar bu holatda uzoq vaqt bo‘la oladilar.
Proton - massasi elektron massasidan 1836,1 marta katta bo‘lgan, elektr zaryadi esa
elementar zaryadga e= 1,6 10-19 kl, spini esa spini esa S =1/`2 ga teng bo‘lgan musbat zaryadli
turg‘un elementar zarradir.
Neytron - massasi elektron massasidan 1838,6 olti marta katta bo‘lgan, zaryadsiz, spini S
=1/2ga ga teng bo‘lgan elementar zarradir.
Nuklon - Proton va neytronlardan tashkil topgan bo‘lib, atom yadrosi shu zaryadlardan
tuzilgan.
YAdro zaryadi- yadro tarkibiga kiruvchi protonlar soni Z aniqlaydi, u Ze ga teng, Z soni
Mendeleev davriy jadvalidagi tartib nomerini ko‘rsatadi.
YAdroning massa soni A- yadrodagi nuklonlar sonini, ya’ni proton va neytronlar yig‘indi
sonini ko‘rsatadi.
YAdroning neytronlar soni - N = A-Z ga teng.
Izotoplar - yadrodagi protonlar soni o‘zgarmasdan qoladigan yadrolar guruhi.
Izotonlar - yadrodagi neytronlar soni o‘zgarmasdan qoladigan yadrolar guruhi.
Izobarlar - massa soni o‘zgarmasdan qoladigan yadrolar guruhi.
Radioaktivlik -yadroning o‘z-o‘zidan bir yoki bir necha zarralarni chiqarish hodisasi.
Radioaktiv emirilish - radioaktiv yadrolarning o‘zidan biror bir turdagi zarralarni chiqarib,
boshqa yangi yadroga aylanish jarayoni.
Birlamchi yoki ona yadro - radioaktiv emirilishga duchor bo‘layotgan yadrolar.
20
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Ikkilamchi yoki qiz yadro - radioaktiv emirilishi natijasida hosil bo‘lgan yadrolar.
Radioaktiv yemirilish qonuni- emirilishga duchor bo‘layotgan radioaktiv yadrolar soni
eksponentsial qonun bo‘yicha kamayadi.
YArim yemirilish davri- boshlang‘ich yadrolar soni ikki marta kamayishi uchun ketgan vaqt.
Preparatning aktivligi- radioaktiv moddalarning bir vaqt ichidagi yemirilishlar soni.
α zarralarni emirilish – og‘ir yadrolarning o‘z-o‘zidan α zarralarini chiqarish jarayoniga
aytiladi.
γ –emirilish - yadroning qo‘zg‘algan holatidan o‘z-o‘zidan kvantlarni chiqarish jarayoniga
aytiladi.
β – emirilish - yadrolarning o‘z-o‘zidan + yoki - zarralarini chiqarish jarayoniga aytiladi.
Kuchli ta’sirlashuv - nuklonlar orasidagi mutsahkam bog‘lanishni hosil qiladigan yadroviy
kuchlar, bu bog‘lanish elementar zarralar (mezonlar) orqali namoyon bo‘ladi.
Elektromagnit ta’sirlashuv - elektromagnit maydon orqali zaryadlangan zarralarga o‘zaro
ta’siri fotonlar orqali namoyon bo‘ladi.
Gravitatsion ta’sirlashuv - jismlar orasidagi butun olam tortishish qonuni orqali tushuntiriladi.
Namoyon bo‘lish ob’ekti topilmagan.
Elektron qobiq - bir xil bosh kvant soni (n) ga, lekin boshqa kvant sonlari har xil bo‘lgan
elektronlar majmuasi.
Elektron qobiqchalar - bir xil bosh kvant soni (n) ga va orbital kvant soni (l), lekin magnit
kvant soni (m) har xil bo‘lgan elektronlar majmuasi.
Pauli printsipi - atomda yoki kvant sistemasida to‘rtta n,l,m,s bir xil kvant sonlariga ega
bo‘lgan ikkita elektron, bitta elektron holatida bo‘lishi mumkin emas.
Dipolning elektrik momenti - vektor kattalik bo‘lib, miqdoran zaryadning elka L (orasidagi
masofaga) ko‘paytmasi bilan aniqlanadi va yo‘nalishi manfiy zaryaddan musbatga yo‘nalgan
bo‘ladi.
Nisbiy dielektrik singdiruvchanlik - dielektriklarning elektr maydonida qutblanish
qobilyatini miqdoran tavsiflofchi o‘lchamsiz kattalik bo‘lib, dielektrikning vakuumdagi maydon
kuchlanganligini necha marta kuchsizlantirishini ko‘rsatadi.
CHiqish ishi - elektronlarning metall sirti yuzasidan vakuumga uzib chiqarishdagi yuza
kuchlariga qarshi bajaradigan ishi.
Elektron emissiya - metallga chiqish ishiga teng yoki undan ortiq energiya beradigandagi
elektronlarning metalldan chiqishi.
1 elektronnovolt ga (1 ev) teng chiqish ishi - potensiallar farqi 1 volt bo‘lgandagi
maydondan elektron zaryadini yutishida maydon kuchlariga qarshi bajargan ishi.
Termoelektron emissiya - qizitilgan metalldan elektronlarning chiqishi.
Fotoelektron emissiya - yoruglik kuchi ta’sirida moddalardan elektronlarning chiqarilishi.
Gazlar ionizatsiyasi - atom va molekulalardan elektronlarning uzilishi jarayoni, ya’ni musbat
va manfiy zaryadlangan ionlarni paydo bo‘lishi.
Gaz razryadi - gazlardan elektr tokining o‘tish jarayoni.
Rekombinatsiya- ionlarning neytral atom yoeki molekulalarga aylanish jarayoni.
Nomustaqil zaryad - gazda tokning tashqi ionlashtiruvchi ta’sirida vujudga keluvchi razryad,
ya’ni elektr o‘tkazuvchanlik.
Mustaqil zaryad - tashqi ionizatorning ta’siri tugaganidan keyin ham davom etadigan gaz
razryadi (elektr o‘tkazuvchanligi).
Plazma - moddaning alohida holati bo‘lib, elektronlarning kontsentratsiyasi musbat ionlarning
kontsentratsiyasiga taxminan teng bo‘lgan kuchli ionlashgan gaz.
21
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Elektrolitlar - erituvchida eriganda ionlarga ajraladigan moddalar bo‘lib, ularda elektr toki
ion o‘tkazuvchanligi bilan xarakterlanadi.
Elektrolitik dissotsiatsiya - erituvchi ta’sirida erigan modda molekulalarini musbat va manfiy
zaryadlangan ionlarga ajralishi.
Elektroliz - elektrolitdan tok o‘tganda tarkibiga kiruvchi moddalarning elektrodlarda ajralib
chiqishi.
Dissotsiatsiyalanish darajasi - elektrolitlardan tok o‘tganda ionlarga dissotsiatsiyalangan
molekulalar sonining moddadagi molekulalarning umumiy soniga nisbati.
Elektrodinamika - fizikaning bir bo‘limi bo‘lib, unda elektromagnit ta’sirlar o‘rganiladi.
Elektrostatika – o‘zgarmas elektrik zaryadlarning xossalari va ta’sirlashuvi o‘rganiladi.
O‘zgarmas tok - tok kuchi va zichlikning vaqt o‘tishi bilan o‘zgarmas qolishi, ya’ni
zaryadlarning tartibli harakat tezligining o‘zgarmasligi.
Elektrik zaryad - elektromagnit ta’sirini aniqlovchi elementar zarrachaning xarakteristikasi.
Elementar zaryad - moduli bo‘yicha elektron (yoki proton) zaryadiga karrali bo‘lgan zaryad
miqdori, ya’ni e=1.6*10-19kl.
Nuqtaviy zaryad – o‘lchamlarini shu zaryadning ta’sir qilish nuqtasiga bo‘lgan masofaga
nisbatan hisobga olmasa ham bo‘ladigan zaryadlangan modda.
Elektromagnit maydon- materiyaning bir formasi bo‘lib, u orqali zaryadlangan zarrachalar
yoki moddalarning elektromagnit o‘zaro ta’siri namoyon bo‘ladi.
Elektrik maydon - elektromagnit maydonning bir ko‘rinishi bo‘lib, uning asosiy
xususiyatlaridan biri shuki, unda bu maydon elektrik zaryadlar yoki zaryadlangan moddalar
tomonidan yaratiladi, hamda ular bu ob’ektlarga harakatda yoki harakatsiz bo‘lishidan qat’iy nazar
ta’sir ko‘rsatadi.
Magnit maydon - elektromagnit maydonning bir ko‘rinishi bo‘lib, ular tokli o‘tkazgichlar,
elektrik zaryadlangan zarrachalar va moddalarning harakati, hamda magnitlangan moddalar va
o‘zgaruvchan elektr maydoni ta’sirida vujudga keladi.
O‘tkazgichlar - butun hajm bo‘yicha erkin zaryad tashuvchilar mavjud bo‘ladi.
Dielektriklar - bu shunday moddalarki, bunda amalda erkin elektronlar, ya’ni erkin zaryad
tashuvchilar mavjud emas.
YArim utkazgichlar - bu shunday moddalarki, ular o‘tkazgich va dielektriklar orasida turuvchi.
Kulon qonuni - ikkita nuqtaviy zaryadlarning o‘zaro ta’sir kuchi shu zaryadlar
modullarining ko‘paytmasiga to‘g‘ri proportsional va ular orasidagi masofaga teskari proporsional.
Elektr maydon kuchlanganligi- vektor kattalikka ega bulgan kuch xarakteristikasi bo‘lib, u
berilgan maydonda nuqtaviy zaryadga ta’sir qilayotgan kuchning shu zaryad miqdori bilan
xarakterlanadi.
Kuch- elektr maydon kuchlanganligi E bo‘lgan maydondagi q zaryadga ta’siri.
Elektr potentsial- son jihatdan birlik musbat zaryadning ma’lum bir nuqtasidagi potensial
energiyasi.
Potensiallar farqi (yoki kuchlanish) - son jihatdan birlik musbat zaryadni boshlang‘ich va
oxirgi nuqtalari orasida harakati natijasida elektrostatika maydon kuchlarini bajargan ishi.
Tok kuchi - elektr tokining miqdoriy o‘lchovi bo‘lib, o‘tkazgichning ko‘ndalang kesim
yuzasidan vaqt birligida o‘tuvchi elektr zaryadi bilan aniqlanadigan skalyar kattalik.
Tok zichligi - vektor kattalik bo‘lib, uning moduli tok kuchining, zaryadlarning tartibli
harakati yo‘nalishiga perpendikulyar bo‘lgan yuzaga nisbati.
Manbaning elektr yurituvchi kuchi (EYUK)- zaryadi 1 kulon bo‘lgan musbat zaryad
tashuvchilarning butun zanjir bo‘ylab ko‘chirishda tashqi kuchlar bajaradigan ishi.
22
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Zanjirning bir qismi uchun Om qonuni – o‘tkazgichdagi tok kuchi uning uchlaridagi
kuchlanishga to‘g‘ri proporsional va o‘tkazgich qarshiligiga teskari proporsional.
1 Om qarshilik - kuchlanish 1v bo‘lganda, o‘tkazgich orqali 1 A tok o‘tgandagi shu o‘tkazgich
qarshiligi kattaligi.
To‘la zanjir uchun Om qonuni- zanjirdagi tok kuchi shu zanjirdagi EYUK ga to‘g‘ri
proporsional va zanjirning ichki va tashqi qarshiliklar yigindisiga teskari proporsional.
Kirxgofning birinchi qoidasi - zanjirning tugunlarida uchrashayotgan tok kuchlarining
algebraik yig‘indisi nolga teng.
Kirxgofning ikkinchi qoidasi -zanjirning ixtiyoriy yopiq konturi uchun tok kuchlarini ularning
mos karshiliklariga kupaytmasining algebraik yig‘indisi shu konturdagi barcha EYUK larning
algebraik yig‘indisiga teng.
Elektr tok quvvati -vaqt birligi ichida tok kuchining bajargan ishi.
Optika-yorug‘lik hodisalari va qonunlari , yorug‘likning tabiati, hamda uning modda bilan
o‘zaro ta’sirini o‘rganuvchi fizikaning bir bo‘limi.
Fotometriya- yorug‘lik to‘lqinlarining yorug‘lik muhiti atrofidagi energiyasi, shu energiyani
o‘lchash usulini o‘rganuvchi bo‘lim.
Geometrik optika- yorug‘likning to‘g‘ri chiziq bo‘ylab tarqalishi, qaytish va sinish
qonunlarini o‘rganuvchi bo‘lim.
To‘lqin optikasi - difraksiya , interferensiya , yorug‘likning qutblanishi kabi optik hodisalarni
yorug‘likning to‘lqin nazariyasi nuqtai nazaridan tahlili.
Molekulyar optika- yorug‘lik bilan muhit orasidagi o‘zaro ta’sirini o‘rganadi. Bunda yorug‘lik
dispersiyasi yorug‘likning yutilishi va sochilishi, spektral analizning nazariy asoslari taxlil qilinadi.
Kvant optikasi- yorug‘lik nurlarini muhitda tarqalishi, muhit bilan ta’sirlashuv jarayoni
o‘rganiladi.
YOrug‘lik oqimi- vaqt birligi ichida tashilayotgan nurlanish quvvati bilan o‘lchanadigan
kattalik.
Manbaning yorug‘lik kuchi-yorug‘lik oqimining bu oqim tarqalayotgan fazoviy burchak
kattaligiga nisbati bilan o‘lchanadigan kattalik.
YOritilganlik-yorug‘lik oqimining o‘zi tushayotgan sirt yuzasiga nisbati bilan o‘lchanadigan
kattalik.
YOrqinlik- yorug‘lik manbaining yuza birligidan barcha yo‘nalishlari bo‘yicha nurlanayotgan
yorug‘lik oqimiga son jihatdan teng bo‘lgan kattalik.
Ravshanlik-manba sirtining yuza birligidan ma’lum yo‘nalishda yuzaga normal ravishda
chiqayotgan yorug‘lik nuriga son jihatdan teng bo‘lgan kattalik.
Linzaning bosh optik o‘qi-sferik sirtlarning markazlari orqali o‘tgan to‘g‘ri chiziqqa aytiladi.
Linzaning optik markazi-yupqa linzaning nurlar yo’nalishi o‘zgarmay o‘tadigan nuqtasi.
Linzaning fokus masofasi- optik markazdan fokusgacha bo‘lgan masofa F ga aytiladi.
Linzaning optik kuchi-fokus masofaga teskari kattalikka aytiladi.
YOrug‘lik (ko‘rinuvchan) –to‘lqin uzunligi 400 -780 nm gacha bo‘lgan elektromagnit
tebranishlarning fazoda tarqalishi.
Kogerent yorug‘lik manbalari-bir xil chastotali va fazalar farqi o‘zgarmas bo‘lgan
tebranishlarni yuzaga keltiruvchi to‘lqin manbai.
YOrug‘lik interferensiyasi-ikki kogerent to‘lqinning fazoda qo‘shilib, ular energiyasi
(intensivligi) ning qayta taqsimlanishiga, ya’ni o‘zaro kuchayishi yoki susayishi.
Optik yo‘l uzunligi-yorug‘lik absolyut sindirish ko‘rsatkichining, muhitda bosib o‘tgan yo‘li
x ga ko‘paytmasi.
23
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
YOrug‘lik difraksiyasi- yorug‘lik tulqinlarining to‘siqlarni aylanib o‘tishi va geometrik soya
sohasi tomoniga og‘ishi.
Difraksion panjara-bir-biriga yaqin joylashgan juda ko‘p parallel tirqishlar yoki to‘siqlardan
iborat sistema.
Tabiiy nur (yorug‘lik) yoki qutblanmagan nur – ko‘ndalang elektromagnit to‘lqindan iborat
bo‘lib, fazoning barcha tekisliklarida tebranayotgan elektr va magnit maydon kuchlanganlik
vektorlarining mavjudligi.
Qutblangan yorug‘lik -elektr vektorlari biron-bir yo‘l bilan tartibga solinishi, ya’ni elektr
tebranish vektorlari bitta tekislikda tebranayotgan nur.
YOrug‘likni yutilishi- yorug‘lik biror muhitdan o‘tayotganda shu muhit qatlamidan
chiqqandan so‘ng intensevligini kamayishi.
YOrug‘likning sochilishi-muhitda tarqalayotgan yorug‘likni mumkin bo‘lgan barcha
tomonlarga og‘ishi.
YOrug‘lik dispersiyasi- muhit sindirish ko‘rsatkichining moddaga tushayotgan yorug‘lik
chatsotasiga (to‘lqin uzunligi) bog‘liqligi.
Spektral analiz - olingan yutilish yoki nurlanish spektrlarga asoslanib, modda tarkibini sifat
va miqdori tomonidan o‘rganiladigan fizik metod.
Konsentratsion kolorimetriya- yorug‘likni yutilishiga asoslanib, eritmalarda modda
konsentratsiyasini aniqlashning fotometrik usul.
Nefilometriya - eritmalardagi makromolekulalarning o‘lchami, kolloid eritmalardagi
zarrachalar, emulsiyalar, aerozollarni xarakterlovchi ma’lumotlarni olish maqsadida sochilgan
yorug‘likni o‘lchash usuli.
Saxarimetriya (polyarimetriya)-aktiv moddalar o‘zlaridan o‘tayotgan yorug‘lik nurini
qutblanish tekisligini burib yuborish xossasiga asoslangan usul.
Jismning yorug‘lik yutish qobiliyati yoki jismning monoxromatik yutish koeffitsientiyutilgan yorug‘lik oqimini tushayotgan yorug‘lik oqimiga nisbatiga aytiladi.
Issiqlik nurlanishi-atom va molekulalarning issiqlik harakati natijasida elektromagnit
nurlanishning g‘alayonlanishi.
Absolyut qora jism-jism o‘ziga tushayotgan nurlanishni butunlay yutgan hol.
Magnit induksiyasi-vektor kattalik bo‘lib, unig moduli birlik magnit momentiga ega bo‘lgan
tokli konturga ta’sir qiluvchi maksimal aylantiruvchi moment bilan aniqlanadi.
Tokli konturning magnit momenti-vektor kattalik bo‘lib, uning moduli tokli konturdan
o‘tayotgan tok kuchini shu kontur yuzasiga ko‘paytmasi.
Aylantiruvchi kuch momenti-tokli konturning magnit momentini magnit induksiya
vektorining vektor ko’paytmasi.
Magnit singdiruvchanlik-o‘lchamsiz kattalik bo‘lib, u muhitning magnit induksiyasi
vakuumdagi magnit induktsiyaga nisbatan necha marta katta (yoki kichik) ekanligini ko‘rsatadi.
Magnit maydon kuchlanganligi- magnit maydonining vektor xarakteritsikasi bo‘lib, u faqat
maydon bog‘langan toklarga bog‘liq bo‘lgan holda u joylashgan muhitning xususiyatlariga bog‘liq
emas.
Magnit oqimi-skalyar kattalik bo‘lib, u ma’lum bir yuza bo‘yicha o‘tayotgan magnit kuch
chiziqlari soni bilan ifodalanadi.
Elektromagnetik induksiya-o‘zgaruvchan magnit maydoni uyurmali elektr maydon manbai
bo‘lib hisoblanadi,u esa o‘z paytida tokli konturda elektr tokini (induksiya tokini) qo‘zg‘atadi.
O‘zinduksiya-zanjirdagi tok o‘zgarishi natijasida shu zanjirning o‘zida induksiyalangan EYUK
vujudga kelishi.
24
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
O‘zaroinduksiya-1A tok o‘tkazuvchi tok bilan chegaralangan yuzadan o‘tuvchi induksiya
magnit oqimi kattaligi.
Kontur induktivligi-1A tok o‘tkazuvchi tok bilan chegaralangan yuzadan o‘tuvchi induksiya
magnit oqimi kattaligi.
Elektrik tebranishlar-zaryad, tok kuchi, kuchlanish kabi elektrik kattaliklarni qandaydir
o‘rtacha qiymatlarga nisbatan qisman yoki to‘la qaytarilishini chekli o‘zgarishi.
Elektromagnit maydon-bir- biri bilan uzviy bog‘langan o‘zgaruvchan elektrik va magnit
maydonlar yig‘indisi.
Elektromagnit to‘lqinlar- fazoda tarqaluvchi o‘zgaruvchan elektromagnit maydon.
Tebranish konturi- induktiv galtak L va C sig‘im kondensatordan iborat yopiq elektrik zanjir.
Poyting vektori-bu vektor moduli tarqalishi yo‘nalishiga perpendikulyar bo‘lgan 1m2 yuza sirti
bo‘yicha 1 sekundda elektromagnit to‘lqinlar olib o‘tadigan energiya.
Tranzistor - emitter, baza va kollektordan iborat elektron lampa.
Voltmetr, millivolt metr- kuchlanishni o‘lchaydigan asboblar.
Ampermetr, milliampermetr-tok kuchini o‘lchaydigan asboblar.
Bir kulon-o‘zgarmas tok kuchi 1A bo‘lganda o‘tkazgichning ko‘ndalang kesimidan 1s
davomida o‘tadigan elektr zaryadining miqdori.
Qarshilikning temperatura koeffitsienti –o‘tkazgich temperaturasi 10S ga o‘zgarganda uning
qarshiligi o‘zgarishini ko‘rsatuvchi kattalik.
Manbaning yorug‘lik kuchi- birlik yuzaga mos keluvchi yorug‘lik oqimi.
Fizik mayatnik-og‘irlik kuchi ta’sirida vertikal ipga nisbatan tebranuvchi qattiq jism.
Burilish burchagi-jism aylana bo‘ylab harakat qilganda uning vaziyati o‘zgarishi.
Burchak tezlik -nuqtaga o‘tkazilgan radiusning birikish burchagining shu burilishga ketgan
vaqt orlig‘iga nisbatidir.
Tezlik –ko‘chishdan vaqt bo‘yicha birinchi tartibli hosilasi.
Tezlanish - ko‘chishdan vaqt bo‘yicha ikkinchi tartibli hosila yoki tezlikdan vaqt bo‘yicha
birinchi tartibli hosila.
Mexanika – jismlarning harakati, muvozanati va ular orasidagi o‘zaro ta’sirni o‘rganadigan
ta’limot.
Dinamika - kuchlar ta’siridagi jismlarning muvozanat qonunlarini o‘rganuvchi ta’limot.
Kinematika – jismlarning massasini va ularga ta’sir qiluvchi kuchlarni hisobga olmagan holda
harakat qonunlarini o‘rganadigan ta’limot.
Aylanish davri - bitta aylanish uchun ketgan vaqt.
Burchak tezlanish-burchak tezlikni vaqt bo‘yicha hosilasi yoki burilish burchagidan vaqt
bo‘yicha olingan ikkinchi tartibli hosila.
Aylanish chastotasi- vaqt birligidagi aylanishlar soni.
Statika –kuchlar ta’siridagi jismlarning muvozanat qonunlarini o‘rganuvchi ta’limot.
Moddaning uchlamchi nuqtasi -bir xil moddaning uch xil fazasi muvozanatda bo‘lgan holat.
Sublimatsiya -kristall qattiq jismni gaz holatiga o‘tishi.
Moddaning agregat holati- bir – biridan strukturasi va molekulalari issiqlik harakatlari bilan
farqlanuvchi holat.
Moddaning fazoviy o‘tishlari- moddaning bir fazadan ikkinchi fazaga o‘tishi.
Bug‘lanish -suyuqlikning gaz holatiga o‘tishi.
Moddaning erishi -qattiq jismning suyuq holatga o‘tishi.
Kattalikning oqim zichligi-vaqt birligi ichida ma’lum bir yuza orqali o‘tayotgan berilgan
kattalik miqdori.
25
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Molekulalarning o‘rtacha yugurish yo‘li-molekulalarni ketma-ket to‘qnashishlar orasida o‘tgan
o‘rtacha masofasi.
Atom spektrlari - erkin yoki kuchsiz ta’sirlashayotgan atomlarning energetik qatlamlari
orasidagi kvant o‘tishlar natijasidagi nurlanish yoki yutilish spektrlari.
Lyuminessensiya- jismning berilgan haroratdagi issiqlik nurlanishidan ortiqcha bo‘lgan,
hamda davomiyligi ham nurlanuvchi yorug‘lik to‘lqinlarining davriy (10-15 s) nurlanishi.
Ionolyuminessensiya – ionlar hosil qilgan lyuminessensiya.
Katodolyuminessensiya - elektronlar hosil qilgan lyuminessensiya.
Radiolyuminessensiya- yadro nurlanishlari lyuminessensiyasi.
Fluoressensiya- qisqa muddatli shu’lalanish.
Molekulyar spektrlar- chiqarish va yutilish spektrlari bo‘lib, molekulalarning bir energetik
sathdan ikkinchisiga kvant o‘tishlarida vujudga keladi. Kattaroq yoki kichikroq kenglikka ega
chiziqlar to‘plamidan iborat bo‘lgan zich joylashgan chiziqlar.
Glossary
Absolute
The ratio of water vapor in a sample of air to the volume of the sample.
humidity:
The temperature of - 273.16 or 0 K at which molecular motion vanishes.
Absolute zero:
The ratio of the total absorbed radiation to the total incident radiation.
Absorptance:
The rate of change of velocity with respect to time.
Acceleration:
Acceleration due The acceleration imparted to bodies by the attractive force of the earth or
any other heavenly body.
to gravity:
capable of transmitting light without decomposing it into its constituent
Achromatic:
colors.
The science of the production, transmission and effects of sound.
Acoustics:
Acoustic
A sound barrier that prevents the transmission of acoustic energy.
shielding:
Any change in which there is no gain or loss of heat.
Adiabatic:
A lens of zero convergent power, whose focal points are infinitely distant.
Afocal lens:
The fraction of the total light incident on a reflecting surface, especially a
Albedo:
celestial body, which is reflected back in all directions.
The nucleus of a helium atom (two protons and two neutrons) emitted as
Alpha particle:
radiation from a decaying heavy nucleus.
Alternating
The electric current that changes its direction periodically.
current:
Solids which have neither definite form nor structure.
Amorphous:
S.I. Unit of electric current, one ampere is the flow of one coulomb of
Ampere:
charge per second.
The maximum absolute value attained by the disturbance of a wave or by
Amplitude:
any quantity that varies periodically.
The angle between tangents to the liquid surface and the solid surface
Angle of contact:
inside the liquid, both the tangents drawn at the point of contact.
26
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Angle
incidence:
Angle
reflection:
Angle
refraction:
of
of
of
The angle between the incident ray and the normal.
The angle between the reflected ray and the normal.
The angle between the refracted ray and the normal.
The angle of inclination of a plane with the horizontal such that a body
placed on the plane is at the verge of sliding.
A unit of length, 1 = 10-10 m.
Angstrom:
Also called moment of momentum, it is the cross product of position
Angular
vector and momentum.
momentum:
The rate of change of angular displacement with time.
Angular velocity:
A process in which a particle and antiparticle combine and release their
Annihilation:
rest energies in other particles.
The antiparticle of neutrino, it has zero mass and spin ½.
Antineutrino:
A body immersed in a fluid experiences an apparent loss in weight which
Archimedes
is equal to the weight of the fluid displaced by the body.
principle:
It is equal to one-twelfth the mass of C -12 isotope of carbon, 1 amu =
Atomic mass unit:
1.66x 10-27 Kg.
The number of protons in an atomic nucleus.
Atomic number:
The number of molecules in a gram molecular weight of a substance, it is
Avogadro
equal to 6.02 x 1023.
number:
Under the same conditions of temperature and pressure, equal volumes of
Avogadro's law:
all gases contain equal number of molecules.
Balmer lines:Lines in the spectrum of hydrogen atom in visible range, produced by transition
between n 2 and n = 2, n is the principal quantum no.
Bar:A unit of pressure, equal to 105 Pascals.
Baryon:subatomic particle composed of three quarks.
Beat:A phenomenon of the periodic variation in the intensity of sound due to superposition of
waves differing slightly in frequency.
Bernoulli's theorem:The total energy per unit volume of a non-viscous, incompressible fluid in a
streamline flow remains constant.
Beta particle:An electron emitted from a nucleus in radioactive decay.
Binding energy:The net energy required to decompose a system into its constituent particles.
Black body:An ideal body which would absorb all incident radiation and reflect none.
Black hole:The remaining core of a supernova that is so dense that even light cannot escape.
Boyle's law:For a given mass of a gas at constant temperature, the volume of the gas is inversely
proportional to the pressure.
Brewster's law:States that the refractive index of a material is equal to the tangent of the
polarizing angle for the material.
Brownian motion:The continuous random motion of solid microscopic particles when suspended
in a fluid medium due to the consequence of ongoing bombardment by atoms and molecules.
Bulk's modulus of elasticity:The ratio of normal stress to the volumetric strain produced in a
body.
Angle of repose:
27
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Buoyant force:upward force on an object immersed in fluid.
A
Abiogenesis:
The study of how life on Earth could have arisen from inanimate matter. It should not be confused
with evolution (the study of how living things change over time), biogenesis (the process of lifeforms
producing other lifeforms) or spontaneous generation (the obsolete theory of complex life originating
from inanimate matter on an everyday basis).
Absolute
Zero:
The lowest temperature possible, equivalent to -273.15°C (or 0° on the absolute Kelvin scale), at
which point atoms cease to move altogether and molecular energy is minimal. The idea that it is
impossible, through any physical process, to lower the temperature of a system to zero is known as
the Third Law of Thermodynamics.
Accretion Disk:
Diffuse material orbiting around a central body such as a protostar, a young star, a neutron star or
a black hole. Gravitycauses the material in the disc to spiral inwards towards the central body with
great speed, and the gravitational forcesacting on the material cause the emission of x-rays, radio
waves or other electromagnetic radiation (known as quasars).
Alpha Particle (Alpha Decay):
A particle of 2 protons and 2 neutrons (essentially a heliumnucleus) that is emitted by an unstable
radioactive nucleusduring radioactive decay. It is a relatively low-penetration particle due its
comparatively low energy and high mass.
Angular
Momentum:
A measure of the momentum of a body in rotational motion about its centre of mass. Technically, the
angular momentum of a body is equal to the mass of the body multiplied by the cross product of the
position vector of the particle with its velocity vector. The angular momentum of a system is the sum
of the angular momenta of its constituent particles, and this total is conserved unless acted on by an
outside force.
Anthropic
Principle:
The idea that the fundamental constants of physics and chemistry are just right (or “fine-tuned”) to
allow the universe and life as we know it to exist, and indeed that the universe is only as it is because
we are here to observe it. Thus, we find ourselves in the kind of universe, and on the kind of planet,
where conditions are ripe for our form of life.
Antimatter:
A large accumulation of antiparticles - antiprotons, antineutronsand positrons (antielectrons) which have opposite properties to normal particles (e.g. electrical charge), and which can come
together to make antiatoms. When matter and antimatter meet, they self-destruct in a burst of highenergy photons or gamma rays. The laws of physics seem to predict a pretty much 50/50 mix
28
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
of matter and antimatter, despite the observable universeapparently consisting almost entirely
of matter, known as the “baryon asymmetry problem”.
Atom:
The basic building block of all normal matter, consisting of anucleus (which is itself composed of
positively-charged protonsand zero-charged neutrons) orbited by a cloud of negativelycharged electrons, so that the positive charge is exactly balanced by the negative charge and the atom
as a whole is electrically neutral. Atoms range from about 32 to about 225 picometres in size (a
picometre is a trillionth of a metre). A typical human hair is about 1 million carbon atoms in width.
B
Back to Top
Beta Particles (Beta Decay):
High-energy, high-speed electrons or positrons (antielectrons) emitted by some types
of radioactive
decay,
when
an
unstable
atomic nucleus with
an
excess
of neutrons or protonsundergoes beta decay (a process mediated by the weak nuclear force). The
particles emitted are a form of ionizing radiation, also known as beta rays.
Big Bang:
The huge “explosion” 13.7 billion years ago in which theuniverse (including all space, time
and energy) is thought to have been created. According to this theory, the universe began in a superdense, super-hot state and has been expanding and cooling ever since. The phrase was coined by Fred
Hoyle during a 1949 radio broadcast.
Big Crunch:
One possible scenario for the ultimate fate of the universe, in which the gravity of the matter in
the universe (providing that there is in fact a “critical mass”) will one day halt and reverse
the universe’s expansion in a mirror image of the Big Bang, causing it to collapse into a black
hole singularity. However, in the light of recent evidence for an accelerating universe, this is no
longer considered the most likely outcome.
Black Body:
An idealized object that absorbs all electromagnetic radiationthat falls on it, without passing
through and without reflection. The radiation emitted from a black body is mostly infrared lightat
room temperature, but as the temperature increases it starts to emit visible wavelengths, from red
through to blue, and then ultraviolet light at very high temperatures.
Black Hole:
The warped space-time remaining after the gravity of a massive body has caused it to shrink down
to a point. It is a region of empty space with a point-like singularity at the centre and anevent
horizon at the outer edge. It is so dense that no normalmatter or radiation can escape its gravitational
29
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
field, so that nothing - not even light - can ever leave (hence its blackness). It is thought that
most galaxies have a supermassive black hole at their heart.
C
Classical
Physics:
A general term used to describe the physics based on principles developed before the rise of general
relativity and quantum mechanics, essentially physics as it had existed up to the early years of the
20th Century. It includes the mechanics of Galileo and Newton, the electrodynamics of Maxwell, the
thermodynamics of Boyle and Kelvin, and usually even the special relativity of Einstein.
Complementarity:
The idea in quantum theory that items can be separately analyzed as having several contradictory,
and apparently mutually exclusive, properties. For example, the wave-particle duality of light,
wherelight can either behave as a particle or as wave, but not simultaneously as both.
Copernican
Principle:
The idea that there is nothing special about our position in the universe, a generalized version of
Nicolaus Copernicus’ recognition that the Earth is actually just a planet circling the Sun, and not vice
versa.
Cosmic Microwave Background Radiation:
Cosmic microwave background radiation (or CMB for short) is the “afterglow” of the Big Bang, a
microwave radiation which still uniformly permeates all of space at a temperature of around -270°C
(about 3° above absolute zero). It is considered to be the best evidence for the standard Big
Bang model of theuniverse.
Cosmic Inflation:
The idea that, in the first split-second after the Big Bang, theuniverse underwent a fantastically
fast (exponential) expansion driven by the vacuum of empty space. The theory was developed
by Alan Guth in the early 1980s to explain certain problems and inconsistencies with the basic Big
Bang theory, such as those related to the large-scale structure of the features of the universe, the
“horizon problem”, the “flatness problem” and the “magnetic monopole problem”.
Cosmic
Rays:
High speed, energetic particles (about 90% of which are protons) originating from space that impinge
on Earth's atmosphere. Some are generated by our own Sun, some by supernovas, some by as yet
unknown events in the farthest reaches of the visible universe. The term "ray" is a misnomer, as
cosmic particles arrive individually, not in the form of a ray or beam of particles.
Cosmological
Constant:
A term added by Albert Einstein as a modification to his original theory of general relativity, in order
to balance the attractive force of gravity and achieve a static or stationary universe. It represents the
possibility that there is a density and pressure associated with apparently empty space, and that the
overall mass-energy of the universe is actually much greater than currently estimated. Once
30
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
dismissed as just a mathematical “fix”, it has been revived in recent years with the discovery of the
apparent acceleration of the expansion of the universe.
Cosmological Principle:
The starting point for the General Theory of Relativity and theBig Bang theory is that, that
averaged over large distances, one part of the universe looks approximately like any other part, and
that, viewed on sufficiently large distance scales, there are no preferred directions or preferred places
in the universe. Stated in more technical terms, on large spatial scales, the universe is homogeneous
and isotropic.
Critical Mass (Critical Density):
As applied to the universe as a whole, critical mass refers to the total required mass of matter in
the universe which will allow the effects of gravity to overcome its continued outward expansion. If
the universe contains more than the critical mass of matter, its gravity will eventually reverse the
expansion, causing the universe to collapse back to what has become known as the Big Crunch. If,
however, it contains insufficientmatter, it will go on expanding forever. In the same way, critical
density is that overall density of thematter in the universe which will just allow continued expansion.
In other contexts, critical mass is also used to refer to the amount of fissile material needed to
sustainnuclear fission.
D
Back to Top
Dark Energy:
An invisible, hypothetical form of energy with repulsive gravitythat permeates all of space and
that may explain recent observations that the universe appears to be expanding at an accelerating rate.
In some models of cosmology, dark energy accounts for 74% of the total mass-energy of
the universe. Its exact nature remains a mystery, although Einstein’s hypothesized “cosmological
constant” is now considered a promising candidate.
Dark
Matter:
Matter that gives out no light and does not interact with the electromagnetic force, but whose
presence can be inferred from gravitational effects on visible matter. It is estimated that there may be
between 6 and 7 times as much dark matter as normal, bright matter in the universe, although its
exact nature remains a mystery.
Decoherence:
The process by which bodies and quantum systems lose some of their more unusual quantum
properties (e.g. superposition, or the ability to appear in different places simultaneously) as they
interact with their environments. When a particle decoheres, itsprobability wave collapses,
any quantum superpositionsdisappear and it settles into its observed state under classical physics.
Density:
The mass of an object divided by its volume, a measure of how much it is compacted or crowded
31
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
together (e.g. air is low in density, iron is high). Boyle’s Law dictates that a substance increases in
density as its pressure is increased or as its temperature is decreased.
Dimensions:
Independent directions in space-time. We are familiar with the three dimensions of space (length,
width and height, or east-west, north-south and up-down) and one of time (past-future),
but superstring theory, for example, requires the universe to have ten dimensions.
DNA:
Deoxyribonucleic acid (DNA) molecules consist of two long intertwined polymers of nucleotides,
with backbones made of sugars and phosphate groups joined by ester bonds, structured as the
familiar double helix. DNA is responsible for the long-term storage of genetic information, and
specifies the sequence of the amino acids within proteins. It is organized into structures called
chromosomes, and contains the genetic instructions used in the development and functioning of all
known living organisms and some viruses. The first accurate model of the structure of DNA was
formulated by James Watson and Francis Crick in 1953. The genetic information from DNA is
transmitted into the nucleus of cells by molecules of RNA, which controls certain chemical processes
in the cell. Both DNA and RNA are considered essential building blocks of life.
E
Electric
Charge:
A property of microscopic particles, which may be either positive (e.g. protons) or negative
(e.g.electrons). Particles with the same charge repel each other, and particles with opposite charges
attract each other. The field of force that surrounds an electric charge is called an electric field, and a
river of charged particles flowing through a conductor is called an electric current.
Electric
Field:
The field of force that surrounds an electric charge (in the same way as a magnetic field is the field of
force that surrounds a magnet). Together, the electric and magnetic fields make up the
electromagnetic field which underlies light and other electromagnetic waves, and changes in either
field will induce changes in the other, as shown in the equations of James Clerk Maxwell.
Electromagnetic
Force
(or
Electromagnetism):
The force that an electromagnetic field exerts on electrically charged particles. It is one of the
fourfundamental forces of physics (along with the gravitational force and the strong and weak
nuclear forces), and the one responsible for most of the forces we experience in our daily lives. The
electromagnetic forces acting between the electrically charged protons and electrons inside atomsand
between atoms are essentially responsible for gluing together all ordinary matter.
Although hugely stronger (1042 times) than the force of gravity, it is a less dominant force on larger
scales because the attractive and repulsive interactions tend to cancel each other out. Like gravity, the
electromagnetic force is subject to an inverse-square law, and its strength is inversely proportional to
the square of the distance between the particles. The force is mediated or operated by the exchange
of photons between the particles. The ‘electrostatic force’ is one aspect of the electromagnetic force,
which arises when two charged particles are static (i.e. not in motion).
32
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Electromagnetic Radiation (or Electromagnetic Waves):
A wave that travels though space at the speed of light, consisting of an electrical field that
periodically grows and dies, alternating with a magnetic field that periodically dies and grows.
Electromagnetic waves carry energy and momentum, which may be imparted when it interacts
with matter.
In order of increasing frequency, the electromagnetic spectrum includes radio waves, microwaves,
terahertz radiation, infrared radiation, visible light, ultraviolet radiation, x-rays and gamma rays.
Electron:
A negatively-charged sub-atomic particle. It is an indivisible,elementary particle, and is usually to
be found orbiting thenucleus of an atom. Electrons in an atom (which exist in the same quantity as
the number of protons in the nucleus of the particular atom, so that the overall electric charge is zero)
are constrained to occupy certain discrete orbital positions or “shells” around the nucleus.
Interactions between the electrons of different atoms play an essential role in chemical bonding and
phenomena such as electricity, magnetism and thermal conductivity. The discovery of electrons is
credited to the British physicist J. J. Thomson in 1897.
Element:
A substance that cannot be reduced any further by chemical means. It is a pure chemical substance
composed of atomswith the same atomic number (i.e. the same number of protonsin its nucleus).
There are 92 naturally occurring elements on Earth, and all chemical matter consists of these
elements (although a further 25 have been discovered as products of artificial nuclear reactions).
Elements with atomic numbers 83 or higher are inherently unstable, and undergo radioactive decay.
The list of elements is usually shown in the form of a Periodic Table, in order of their atomic number
(see box at right, or click ther source link for a more detailed interactive Periodic Table).
Elementary Particle:
A particle with no substructure (i.e. not made up of smaller particles) and which is therefore one
of the basic building blocks of the universe from which all other particles are
made.Quarks, electons, neutrinos, photons, muons and gluons (along with their respective
antiparticles) are all elementary particles;protons and neutrons (which are made up of quarks) are not.
Energy:
Sometimes defined as the ability to do work or to cause change, energy is notoriously difficult to
define. In accordance with the Law of Conservation of Energy, energy can never be created or
destroyed but it can be changed into different forms, including kinetic, potential,
thermal, gravitational, sound, light, elastic and electromagnetic. The standard scientific unit of energy
is the Joule.
Entanglement:
The phenomenon in quantum theory whereby particles that interact with each other become
permanently dependent on each other’s quantum states and properties, to the extent that they lose
33
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
their individuality and in many ways behave as a single entity. At some level, entangled particles
appear to “know” each other’s states and properties.
Entropy:
A measure of the disorder of a system and of its constituent molecules. More specifically, in
thermodynamics it is a measure of the unavailability of a system’s energy to do work. The Second
Law of Thermodynamics embodies the idea that entropy can never decrease, but rather will tend to
increase over time, approaching a maximum value as it reaches thermal equilibrium. A classic
example of increasing entropy is ice melting in water until both reach a common temperature.
Event Horizon:
A one-way boundary in space-time surrounding a black hole. Any matter or light that falls through
the event horizon of ablack hole can never leave, and any event inside the event horizon cannot affect
an outside observer.
Exogenesis:
The hypothesis that life on Earth was transferred from elsewhere in the universe. A related but more
limited concept is that of panspermia, the idea that "seeds" of life exist already all over the universe,
and that life on Earth may have originated through these "seeds".
Exotic
Particle:
A kind of theoretical particle said to exist by some theories of modern physics, whose alleged
properties are extremely unusual. Examples include tachyons (particles that always travels faster than
the speed of light), WIMPs (weakly interacting massive particles which do not interact
withelectromagnetism or the strong nuclear force), axions (particles with no electric charge, very
smallmass and very low interaction with the strong and weak forces) and neutrinos (particles that
travel close to the speed of light, lack an electric charge and are able to pass through
ordinary matteralmost undisturbed).
Expanding Universe:
A universe which is constantly growing in size and in which the constituent parts (galaxies,
clusters, etc) are flying ever further away from each other. Although contrary to the
static universewhich had been assumed throughout most of history, an expanding universe was
confirmed by Edwin Hubble’s 1929 observations of the redshifts of distant Cepheid variable stars,
and is consistent with most solutions to Albert Einstein’s general relativity field equations. It also
suggests that, in the distant past, the universe was much smaller and ultimately had its beginning in
aBig Bang type event.
F
Fundamental
(or
Elementary)
Forces:
There are four basic forces of physics that are believed to underlie all phenomena in the universe.
Listed in order of strength they are: the strong nuclear force, the electromagnetic force, the weak
nuclear force and the gravitational force (or gravity). It is thought likely that, in extremely
high energyconditions such as occurred near the beginning of the Big Bang, the four fundamental
34
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
forces of nature are actually unified in a single theoretical framework (known as the Grand Unified
Theory).
According to quantum field theory, the forces between particles are mediated by other particles, and
the fundamental forces can be described by the exchange of virtual force-carrying particles:
the strong nuclear force mediated by gluons; the electromagnetic force by photons; the weak nuclear
force by W and Z bosons; and gravity by hypothetical gravitons.
G
Galaxy:
One of the basic building block of the universe, a galaxy is a massive system of stars, stellar
remnants, gas, dust, and possibly a hypothetical substance known as dark matter, bound together
by gravity. Galaxies may be anywhere from 1 to 100,000 light years across and are typically
separated by millions of light years of intergalactic space. They are grouped into clusters, which in
turn can form larger groups called superclusters and sheets or filaments. There are many different
kinds of galaxy including spiral (like our own Milky Way galaxy), elliptical, ring, dwarf, lenticular
and irregular. There are estimated to be over a hundred billion galaxies in the observable universe.
Gamma Ray:
A form of electromagnetic radiation produced by some kinds ofradioactive decay. Gamma rays
have the highest frequency andenergy and the shortest wavelength in the electromagnetic spectrum,
and penetrate matter more easily that either alpha particles or beta particles.
Gamma
Ray
Burst:
A narrow beam of intense electromagnetic radiation released during a supernova event, as a rapidly
rotating, high-mass star collapses to form a black hole. They are the brightest events known to occur
in the universe, and can last from milliseconds to several minutes (typically a few seconds). The
initial burst is usually followed by a longer-lived 'afterglow' emitted at longer wavelengths (X-ray,
ultraviolet, optical, infrared and radio).
Gas:
A state of matter consisting of a collection of particles (molecules, atoms, ions, electrons, etc)
without a definite shape or volume, and that are in more or less random motion. A gas tends to have
relatively low density and viscosity compared to the solid and liquid states of matter, expands and
contracts greatly with changes in temperature or pressure (“compressible”), and diffuses readily,
spreading and homogeneously distributing itself throughout any container.
General Theory of Relativity:
Sometimes known as the Theory of General Relativity, this wasAlbert Einstein’s refinement
(published in 1916) of his earlierSpecial Theory of Relativity and Sir Isaac Newton’s much
earlierLaw of Universal Gravitation. The theory holds that acceleration and gravity are
indistinguishable - the Principle of Equivalence - and describes gravity as a property of the geometry
(more specifically a warpage) of space-time. Among other things, the theory predicts the existence
of black holes, an expanding universe, time dilation, length contraction, gravitational light bending
35
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
and the curvature of space-time. Although classical physics can be considered a good approximation
for everyday purposes, the predictions of general relativity differ significantly from those of classical
physics. They have become generally accepted in modern physics, however, and have been
confirmed by all observations and experiments to date.
Geodesic:
The shortest path between two points in curved space. It originally meant the shortest route
between two points on the Earth's surface (namely a segment of a great circle) but, since its
application in general relativity, it has come to mean the generalization of the notion of a straight line
as applied to all curved spaces. In non-curved three-dimensional space, the geodesic is a straight line.
In general relativity, a free falling body (on which only gravitational forces are acting) follows a
geodesic in curved four-dimensional space-time.
Grand
Unified
Theory
(or
Unified
Field
Theory):
Also known as Grand Unification or GUT, this refers to any of several unified field theories that
predict that at extremely high energies (such as occurred just after the Big Bang),
the electromagnetic, weak nuclear, and strong nuclear forces are all fused into a single unified field.
Thus far, physicists have only been able to merge electromagnetism and the weak nuclear force into
the “electroweak force”. Beyond Grand Unification, there is also speculation that it may be possible
to merge gravity with the other three gauge symmetries into a “theory of everything”.
Gravity (or Gravitational Force):
The force of attraction that exists between any two masses, whether they be stars, microscopic
particles or any other bodies with mass. It is by far the weakest of the fourfundamental forces (the
others being the electromagnetic force, the strong nuclear force and the weak nuclear force), and yet,
because it is a consistent force operating on all bodies withmass, it is instrumental in the formation
of galaxies, stars, planets and black holes. It was approximately described by Sir Isaac Newton’s Law
of Universal Gravitation in 1687, and more accurately described by Albert Einstein’s General Theory
of Relativity in 1916.
H
Half-Life:
A measure of the speed of radioactive decay of unstable, radioactive atoms. It is the time taken for
half of the nuclei in a radioactive sample to disintegrate or decay. Half-lives can vary from a splitsecond to billions of years depending on the substance.
Hawking Radiation:
Random and featureless sub-atomic particles and thermal radiation predicted to be emitted
by black holes due to quantum effects. Over long periods of time, as a black hole loses
morematter through radiation than it gains through other means, it is therefore expected to dissipate,
shrink and ultimately vanish.
Horizon:
36
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
The horizon of the universe is much like the horizon on Earth: it is the furthest that can be seen
from a particular position. Because light has a finite speed and the universe has a finite age, we can
only see objects whose light has had time to reach us since the Big Bang, so that the
observable universe can be thought of as a bubble centred on the Earth.
Hubble’s
Law:
Formulated by Edwin Hubble in 1929, the law states that the redshift in light coming from
distantgalaxies is proportional to their distance, so that every galaxy appears to be rushing away from
us (or from any other point in the universe) with a speed that is directly proportionate to its distance
from us. It is considered the first observational basis for an expanding universe (or the metric
expansion of space), and the most often cited evidence in support of the Big Bang theory, and
arguably one of the most important cosmological discoveries ever made.
Hydrostatic Equilibrium:
The state in which the force of gravitation working to crush astar is exactly balanced by the
thermal pressure of its hot gaspushing outwards. It is the reason that stars in general do not implode
or explode, and it also explains why the Earth's atmosphere does not collapse to a very thin layer on
the ground.
I
Inertia:
The natural tendency (as defined in Sir Isaac Newton’s First Law of Motion of 1687) of objects to
resist changes in their state of motion. Therefore, a body at rest tends to stay at rest and, once set in
motion, a body tends to stay moving at a constant speed in a straight line (or along a geodesic in
curved space) unless acted on by an outside force. An example of an inertial force is centrifugal
force, which in reality is just due to a body trying to continue in a straight line while constrained to
move along a curved path.
Inertial
Frame
(or
Inertial
System):
A reference frame in which the observers are not subject to any accelerating force. An inertial frame
is a frame of reference in which a body remains at rest or moves with constant linear velocity unless
acted upon by outside forces (as stipulated by Sir Isaac Newton’s First Law of Motion, Force
= MassCH Acceleration). Any frame of reference that moves with constant velocity relative to an
inertial system is itself an inertial system.
Interference:
The ability of two waves passing through each other to mingle, reinforcing each other where crests
coincide and cancelling each other out where crests and troughs coincide, similar to the way ripples
in water interfere with each other. This results, for example, in an interference pattern of light and
dark stripes on a screen illuminated by light from two sources.
Ion:
An atom or molecule that has been stripped of one or more of its orbiting electrons, thus giving it a
37
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
net positive electric charge. Technically, an atom which gains an electron (thus giving it a net
negativeelectric charge) is also a type of ion, known as an anion.
Isotope:
A possible form of an element, distinguishable from other isotopes of the same element by its
differingmass, which is caused by a different number of neutrons in the nucleus (the number
of protons, which gives the atomic number of the element, must be the same). Around 75% of
isotopes are stable, while some are unstable or radioactive, and will decay over time into
other elements.
L
Law of Conservation of Energy:
Also known as the First Law of Thermodynamics, this is the principle that energy can never be
created or destroyed, only converted from one form to another (e.g. the chemical energy of gasoline
can be converted into the energy of motion of a car). The total amount of energy in an isolated
system (or in the universe as a whole) therefore remains constant.
Law of Universal Gravitation:
Published by Sir Isaac Newton in 1687, and sometimes also known as the Universal Law of
Gravity, this was the first formulation of the idea that all bodies with mass pull on each other across
space. Newton observed that the force of gravitybetween two objects is proportional to the product of
the twomasses, and inversely proportional to the square of the distance between them. Although the
theory has since been superseded by Albert Einstein's General Theory of Relativity, it predicts the
movements of the Sun, the Moon and the planets to a high degree of accuracy and it continues to be
used as an excellent approximation of the effects of gravity for everyday applications (relativity is
only required when there is a need for extreme precision, or when dealing with the gravitation of very
massive objects).
Length Contraction:
The phenomenon, predicted by Albert Einstein’s Special andGeneral Theories of Relativity,
whereby, from the relative context of one observer's frame of reference, space or length appears to
decrease as the relative velocities increase.
Life:
A difficult and contentious phenomenon to define, life is usually considered to be a characteristic of
organisms that exhibit certain biological processes (such as chemical reactions or other events that
results in a transformation), and that are capable of growth through metabolism and are capable of
reproduction. The ability to ingest food and excrete waste are also sometimes considered
requirements of life (e.g. bacteria are usually considered to be alive, whereas simpler viruses, which
do not feed or excrete, are not).
The two distinguishing features of living systems are sometimes considered to be complexity and
organization (negative entropy). Some organisms can communicate, and many can adapt to their
38
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
environment through internally generated changes, although these are not universally considered
prerequisites for life.
Light:
Technically, this refers to electromagnetic radiation of a wavelength that is visible to the human eye,
although in the broader field of physics, it is sometimes used to refer to electromagnetic radiation of
all wavelengths, whether visible or not. It exhibits “wave-particle duality” in that it can behave as
both waves and particles (photons). Light travels at a constant speed of about 300,000 kilometres per
second in a vacuum.
Light
Year:
A convenient unit for measuring the large distances in the universe. It is the distance that light travels
in one year which, given that light travels at 300,000 kilometres per second, works out to about
9,460,000,000 kilometres (9.46 trillion kilometres).
M
Magnetic
Field:
The field of force that surrounds a magnet (in the same way as an electric field is the field of force
that surrounds an electric charge). Together, the magnetic and electric fields make up the
electromagnetic field which underlies light and other electromagnetic waves, and changes in either
field will induce changes in the other, as indicated by James Clerk Maxwell’s Equations of
Electromagnetism.
Magnetic
Monopole:
A hypothetical particle that is a magnet with only one pole, and which therefore has a net magnetic
charge. Although the existence of monopoles is indicated by both classical theory and quantum
theory (and predicted by recent string theories and grand unified theories), there is still no
observational evidence for their physical existence.
Mass:
A measure of the amount of matter in a body. It can also be seen as a measure of a body’s inertia or
resistence to change in motion, or the degree of acceleration a body acquires when subject to a force
(bodies with greater mass are accelerated less by the same force and have greater inertia). Mass is
often confused with weight, which is the strength of the gravitational pull on the object (and therefore
how heavy it is in a particular gravitational situation), although, in everyday situations, the weight of
an object is proportional to its mass.
Mass-Energy
Equivalence:
The concept that any mass has an associated energy, and that, conversly, any energy has an
associated mass. In Einstein’s Special Theory of Relativity, this relationship is expressed in the
famous mass-energy equivalence formula, E = mc2, where E = total energy, m = mass and c =
thespeed of light in a vacuum. Given that c is a very large number, it becomes apparent that mass is
in fact a very concentrated form of energy.
Matter:
Anything that has both mass and volume (i.e. takes up space). Matter is what atoms and moleculesare
39
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
made of, and it exists in four states or phases: solid, liquid, gas and plasma (although other phases,
such as Bose-Einstein condensates, also exist).
Molecule:
A collection of atoms glued together by electromagnetic forces. A more formal definition might
be: a sufficiently stable electrically neutral group of at least two atoms, in a definite arrangement,
held together by very strong chemical bonds. A molecule may consist of atoms of the same
chemical element(e.g. oxygen: O2) or of different elements (e.g. water: H2O). Organic molecules are
those which include carbon, and the others are called inorganic.
Momentum:
A measure of how much effort is required to stop a body, defined as the body’s mass multiplied by
its velocity. Thus, a large heavy body (e.g. a train) going relatively slowly may have more
momentum than a smaller body going very fast (e.g. a racing car). The Law of Conservation of
Momentum rules that the total momentum of an isolated system (one in which no net external force
acts on the system) does not change.
Multiverse (Parallel Universes):
A hypothetical set of multiple possible universes (including our own) which exist in parallel with
each other. Our universe would then be just one of an enormous number of separate and
distinct parallel universes, the vast majority of which would be dead and uninteresting, not having a
set of physical laws which would allow the emergence of stars, planets and life.
N
Neutrino:
A sub-atomic elementary particle with no electrical charge and very small mass that travels very
close to the speed of light. They are created as a result of certain types of radioactive decay or nuclear
reaction, such as the decay of a free neutron(i.e. one outside of a nucleus) into a proton and electron.
Being electrically neutral and unaffected by the strong nuclear force or the electromagnetic force,
neutrinos are able to pass through ordinary matter almost undisturbed and are therefore extremely
difficult to detect, although when created in huge numbers they are capable of blowing a star apart in
a supernova.
Neutron:
One of the two main building blocks (along with the proton) of the nucleus at the centre of
an atom. Neutrons have essentially the same mass as a proton (very slightly larger) but no electric
charge, and are made up of one “up” quark and two “down”quarks. The number of neutrons in
an atom determines theisotope of an element. Outside of a nucleus, they are unstable and disintegrate
within about ten minutes.
Neutron
Star:
A star that has shrunk under its own gravity during a supernova event, so that most of its material has
40
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
been compressed into neutrons only (the protons and electrons have been crushed together until they
merge, leaving only neutrons). Neutron stars are very hot, quite small (typically 20 to 30 kilometres
in diameter), extremely dense, have a very high surface gravity and rotate very fast. A pulsar is a kind
of highly-magnetized rapidly-rotating neutron star.
Newton’s
Laws
of
Motion:
The three physical laws, published by Sir Isaac Newton in 1687, that form the basis for classical
mechanics: 1) a body persists its state of rest or of uniform motion unless acted upon by an external
unbalanced force; 2) force equals mass times acceleration; and 3) to every action there is an equal
and opposite reaction.
Nonlocality:
The rather spooky ability of objects in quantum theory to apparently instantaneously know about
each other’s quantum state, even when separated by large distances, in apparent contravention of the
principle of locality (the idea that distant objects cannot have direct influence on one another, and
that an object is influenced directly only by its immediate surroundings).
Nuclear
Fission:
A nuclear reaction in which the nucleus of an atom splits into smaller parts, often producing
freeneutrons, lighter nuclei and photons (in the form of gamma rays). The process releases large
amounts of energy, both as electromagnetic radiation and as kinetic energy of the resulting
fragments.
Nuclear Fusion:
The welding together of two light nuclei to make a heaviernucleus, resulting in the liberation of
nuclear energy. An example of this kind of nuclear reaction is the binding together of
hydrogen nuclei in the core of the Sun to make helium. In larger, hotter stars, helium itself may fuse
to produce heavierelements, a process which continues up the periodic table ofelements as far as iron.
The fusion of ultra-stable iron nucleiactually absorbs energy rather than releasing it, and so iron does
not easily fuse to create heavierelements.
Nucleosynthesis:
The process of creating new atomic nuclei from pre-existingprotons and neutrons by a process
of nuclear fusion. The primordial nucleons (hydrogen and helium) themselves were formed from
the quark-gluon plasma in the first few minutes after the Big Bang, as it cooled to below ten million
degrees, but nucleosynthesis of the heavier elements (including all carbon, oxygen, etc) occurs
primarily in the nuclear fusionprocess within stars and supernovas.
Nucleus:
The tight cluster of nucleons (positively-charged protons and zero-charged neutrons, or just a
singleproton in the case of hydrogen) at the centre of an atom, containing more than 99.9% of
the atom’smass. The nucleus of a typical atom is about 100,000 smaller than the total size of
the atom(depending on the individual atom).
O
Back to Top
41
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Oscillating
Universe:
A cosmological model, in which the universe undergoes a potentially endless series of oscillations,
each beginning with a Big Bang and ending with a Big Crunch. After the Big Bang,
the universeexpands for a while before the gravitational attraction of matter causes it to collapse back
and undergo a “bounce”.
P
Back to Top
Panspermia:
The hypothesis that "seeds" of life exist already all over theuniverse, and that life on Earth may
have originated through these "seeds", driven by a steady influx of cells or viruses arriving from
space via comets. It is a more limited form of the related hypothesis of exogenesis, which also
proposes that lifeon Earth was transferred from elsewhere in the universe, but makes no prediction
about how widespread it may be.
Pauli
Exclusion
Principle:
The prohibition on two identical fermions from sharing the same quantum state simultaneously.
Among other implications it stops electrons (which are a kind of fermion) from piling on top of each
other, thereby explaining the existence of different types of atoms and the whole variety of
the universearound us.
Photoelectric Effect:
The phenomenon in which, when a metallic surface is exposed to electromagnetic radiation above
a certain threshold frequency (typically visible light and x-rays), the light is absorbed
andelectrons are emitted. The discovery of the effect is usually attributed to Heinrich Hertz in 1887,
and study of it (particularly by Albert Einstein) led to important steps in understanding
thequantum nature of light and electrons and in formulating the concept of wave-particle duality.
Photon:
A particle (or quantum) of light or other electromagnetic radiation, which has no intrinsic mass and
can therefore travel at the speed of light. It is an elementary particle and the basic unit of light, and
effectively carries the effects of the electromagnetic force. The modern concept of the photon as
exhibiting both wave and particle properties was developed gradually by Albert Einstein and others.
Planck
Constant:
The proportionality constant (h) which provides the relation between the energy (E) of a photon and
the frequency (v) of its associated electromagnetic wave in the so-called Planck Relation E = hv. It is
essentially used to describe the sizes of individual quanta in quantum mechanics. Its value depends
on the units used for energy and frequency, but it is a very small number (with energy measured in
Joules, it is of the order of 6.626 CH 10-34 J·s).
Planck
Energy:
The super-high energy (approximately 1.22 CH 1019 GeV) at which gravity becomes comparable in
strength to the other fundamental forces, and at which the quantum effects of gravity become
important.
42
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Planck
Length:
The fantastically tiny length scale (approximately 1.6 CH 10-35 metres) at which gravity becomes
comparable in strength to the other fundamental forces. It is the scale at which classical ideas
aboutgravity and space-time cease to be valid, and quantum effects dominate.
Planck
Temperature:
The temperature of the universe at 1 Planck Time after the Big Bang, approximately equal to 1.4 CH
1032°C.
Planck
Time:
The time it would take a photon travelling at the speed of light to cross a distance equal to the Planck
Length. This is the “quantum of time”, the smallest measurement of time that has any meaning, and
is approximately equal to 10-43 seconds.
Planck
Units:
“Natural units” of measurement (i.e. designed so that certain fundamental physical constants are
normalized to 1), named after the German physicist Max Planck who first proposed them in 1899.
They were an attempt to eliminate all arbitrariness from the system of units, and to help simplify
many complex equations in modern physics. Among the most important are the Planck Energy,
the Planck Length, the Planck Time and the Planck Temperature.
Plasma:
A partially ionized gas of ions and electrons, in which a certain proportion of the electrons are free
rather than being bound to an atom or molecule. It has properties quite unlike those of solids, liquids
or gases and is sometimes considered to be a distinct fourth state of matter. An example of plasma
present at the Earth's surface is lightning.
Positron:
The antiparticle or antimatter counterpart of the electron. The positron, then, is an elementary
particlewith a positive electric charge, and the same mass and spin as an electron. The existence of
positrons was first postulated in 1928 by Paul Dirac, and definitively discovered by Carl Anderson in
1932.
Primeval
(or
Primordial)
Soup:
The theory of the origin of life on Earth first put forward by Alexander Oparin, whereby a “soup” of
organic molecules could be created in a “reducing” oxygen-less atmosphere through the action of
sunlight, creating the necessary building blocks for the evolution of life.
Principle
of
Equivalence:
The idea that no experiment can distinguish the acceleration due to gravity from the inertial
acceleration due to a change of velocity (or acceleration).
Principle of Relativity:
The idea, first expressed by Galileo Galilei in 1632 and also known as the principle of invariance,
that the fundamental laws of physics are the same in all inertial frames and that, purely by observing
43
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
the outcome of mechanical experiments, one cannot distinguish a state of rest from a state of constant
velocity. Thus, all uniform motion is relative, and there is no absolute and well-defined state of rest.
Probability
Wave
(or
Wave
Function):
A description of the probability that a particle in a particular state will be measured to have a given
position and momentum. Thus, a particle (an electron, photon or any other kind of particle), when not
being measured or located, takes the form of a field or wave of probable locations, some being more
probable or likely than others.
Prokaryotes and Eukaryotes:
Prokaryotes are primitive organisms that lack a cell nucleus or any other membrane-bound
organelles. Most prokaryotes are single-celled (although some have multicellular stages in their lifecycles), and they are divided into two main domains, bacteria and archaea.
Eukaryotes, on the other hand, are organisms whose cells contain a nucleus and are organized into
complex structures enclosed within membranes. Most living organisms (including all animals, plants,
fungi and protists) are eukaryotes.
Proton:
One of the two main building blocks (along with the neutron) of the nucleus at the centre of
an atom. Protons carry a positiveelectrical charge, equal and opposite to that of electrons, and are
made up of two “up” quarks and one “down” quark. The number of protons in
an atom’s nucleus determines its atomic number and thus which chemical element it represents.
Pulsar:
A highly-magnetized rapidly-rotating neutron star that sweeps regular pulses of
intense electromagnetic radiation (radio waves) around space like a lighthouse. The intervals between
pulses are very regular, ranging from 1.4 milliseconds to 8.5 seconds depending on the rotation
period of the star. A pulsar generally has a mass similar to our own Sun, but a diameter of only
around 10 kilometres.
Q
Quantum:
The smallest chunk into which something can be divided in physics. Quantized phenomena are
restricted to discrete values rather than to a continuous set of values. Some quanta take the form
ofelementary particles, such as photons which are the quanta of the electromagnetic field. Quanta are
measured on the tiny Planck scale of the order of around 10-35 metres.
Quantum
Electrodynamics:
Sometimes shortened to QED, it is essentially the theory of how light interacts with matter. More
specifically, it deals with the interactions between electrons, positrons (antielectrons) and photons. It
explains almost everything about the everyday world, from why the ground is solid to how a laser
works to the chemistry of metabolism to the operation of computers.
44
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Quantum
Gravity
(or
Quantum
Theory
of
Gravity):
A so-called “theory of everything” which combines the General Theory of Relativity (the theory of
the very large, which describes one of the fundamental forces of nature, gravity) with quantum
theory (the theory of the very small, which describes the other three fundamental
forces, electromagnetism, theweak nuclear force and the strong nuclear force) into a unified theory.
However, even the most promising candidates, like superstring theory and loop quantum gravity, still
need to overcome major formal and conceptual problems, and this is still very much a work in
progress.
Quantum
State:
The set of characteristics describing the condition a quantum mechanical system is in. It can be
described by a wave function or a complete set of quantum numbers (energy, angular
momentum,spin, etc), although, when observed, the system is forced into a specific stationary
"eigenstate". If a particle within a quantum system (such as an electron within an atom) moves from
one quantum state to another, it does so instantaneously and in discontinuous steps (known as
quantum leaps or jumps) without ever being in a state in between.
Quantum
Theory
(or
Quantum
Physics
or
Quantum
Mechanics):
The physical theory of objects isolated from their surroundings. Because it is very difficult to isolate
large objects, quantum theory (also known as quantum mechanics or quantum physics) is essentially
a theory of the microscopic world of atoms and their constituents. Among its main principles are the
dual wave-like and particle-like behaviour of matter and radiation (wave-particle duality), and the
prediction of probabilities in situations where classical physics predicts certainties. Classical
physicsprovides a good approximation to quantum physics for everyday purposes, typically in
circumstances with large numbers of particles.
Quantum Tunnelling:
The quantum mechanical effect in which particles have a finite probability of crossing
an energybarrier, or transitioning through an energy state normally forbidden to them by classical
physics, due to the wave-like aspect of particles. Theprobability wave of a particle represents the
probability of finding the particle in a certain location, and there is a finite probability that the
particle is located on the other side of the barrier.
Quark:
A type of elementary particle which is the major constituent of matter. Quarks are never found on
their own, only in groups of three within composite particles called hadrons (such
as protons and neutrons). There are six different types (or “flavours”) of quarks - up, down, top,
bottom, charm and strange - and each flavour comes in three “colours” - red, green or blue (although
they have no colour in the normal sense, being much smaller than the wavelength of visible light).
Quarks are the only particles in the standard model of particle physics to experience all
four fundamental forces, and they have the properties of electric charge, colour
charge, spin and mass.
Quasar:
45
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Short for QUAsi-StellAr Radio source, a quasar is an extremely powerful and distant active
galactic nucleus (a compact region at the centre of a galaxy which has a much higher than normal
luminosity). It derives most of its energy from very hot matterswirling into a central
supermassive black hole, and can generate as much light as a hundred normal galaxies from a much
smaller volume. It is one of the most powerful objects in the universe, and among the most distant
things ever seen in space.
R
Back to Top
Radioactivity
(Radioactive
Decay):
The disintegration of unstable heavy atomic nuclei into lighter, more stable, atomic nuclei,
accompanied in the process by the emission of ionizing radiation (alpha particles, beta
particles orgamma rays). This is a random process at the atomic level but, given a large number of
similar atoms, the decay rate on average is predictable, and is usually measured by the half-life of the
substance.
Redshift:
The shifting of emitted electromagnetic radiation (such as visible light) towards the less energetic
red end of the electromagnetic spectrum when a light source is moving away from the observer. This
occurs as the wavelengths of lightstretch as an object moves away (as opposed to being squashed by
an approaching object), similar to the familiar Doppler effect on sound waves. Among other things, it
can be used as a measure of the speed with which galaxies throughout the universe are moving away
from us.
Relativity:
The theory, formulated essentially by Einstein’s theory has two main parts: the Special Theory of
Relativity (or special relativity) which deals with objects in uniform motion, and the General Theory
of Relativity (or general relativity) which deals with acclerating objects and gravity.
RNA and DNA:
Ribonucleic acid (RNA) is a type of single-stranded moleculethat consists of a long chain of
nucleotide units, each of which consists of a nitrogenous base, a ribose sugar and a phosphate. RNA
transmits the genetic information from DNAinto the nucleus of cells, and controls certain chemical
processes in the cell. Both DNA and RNA are considered essential building blocks of life.
S
Second
Law
of
Thermodynamics:
The idea that entropy (the microscopic disorder of a body) can never decrease, but rather will tend to
increase over time. In practice, this results in an inexorable tendency towards uniformity and away
from patterns and structures, and means, for example, that heat always flows from a hot body to a
cold one, and that differences in temperature, pressure and density tend to even out in an isolated
physical system (or in the universe as a whole).
46
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Simultaneity:
The idea, disproved by Einstein in his Special Theory of Relativity, that events that appear to happen
at the same time for one person should appear to happen at the same time for everyone in
theuniverse.
Singularity (or Gravitational Singularity):
A region of space where the density of matter, or the curvature of space-time, becomes infinite
and the concepts of space and time cease to have any meaning. At this point, the whole fabric
of space-time ruptures and the precepts of Einstein’s General Theory of Relativity (and physics in
general) break down and no longer apply, similar to the way in which a calculator returns an error
when asked to divide by zero. According to general relativity, the Big Bang started with a singularity,
and there is a singularity at the centre of a black hole.
Space-Time:
Space-time (or spacetime or the spacetime continuum) is any mathematical model that combines
space and time into a single construct. The fourth dimension of time is traditionally considered to be
of a different sort than the three dimensions of space in that it can only go forwards and not back but,
in Albert Einstein’s General Theory of Relativity, space and time are seen to be essentially the same
thing and can therefore be treated as a single entity.
Special
Theory
of
Relativity:
Albert Einstein’s first major theory, dating from 1905, special relativity builds on Galileo's more
simplistic principle of relativity and relates what one person sees when looking at another person
moving at constant speed relative to them. “Special” indicates that the theory restricts itself to
observers in uniform or constant relative motion, a restriction Einstein addressed later in his General
Theory of Relativity. The theory incorporates the principle that the speed of light is the same for
allinertial observers, regardless of the state of motion of the source. Among other things, it reveals
that the moving person appears to shrink in the direction of their motion (length contraction)and their
time slows down (time dilation), effects which are ever more marked as speeds approach the speed of
light. The theory also leads to some famous paradoxes like the so-called Time Travel Paradox and the
Twin Paradox.
Speed of Light:
In a vacuum, light travels at a speed of exactly 299,792,458 metres per second, or about 300,000
kilometres per second, a speed which remains constant irrespective of the speed of the source of
the light or of the observer (one of the cornerstones ofAlbert Einstein’s Special Theory of Relativity).
It is the term c in Einstein’s famous equation E = mc2.
Spin:
A fundamental property of sub-atomic elementary particles that
means that behave as though they are spinning or rotating (although in reality they are not spinning at
all). The concept has no direct analogue in the everyday world. Particles of spin Ѕ
(e.g. electrons, positrons, neutrinos and quarks) make up all the matter in the universe, while particles
47
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
with integer spin (0, 1 or 2) give rise to, or mediate, the forces operating between thematter particles
(e.g. photons, gluons, W and Z bosons).
Star:
A massive, luminous ball of gas or plasma, held together by its own gravity, that replenishes the
heat it loses to space by means of nuclear energy generated in its core. Almost all of
theelements heavier than hydrogen and helium were created by thenuclear fusion processes in stars.
There are many different types of stars including binary stars, proto-stars, dwarf stars (like our
nearest star which we call the Sun), supergiants, supernovas, neutron stars, pulsars,quasars, etc. There
are a roughly estimated 10,000 billion billion stars (1022) in the observableuniverse.
Steady State Universe:
A cosmological model developed by Fred Hoyle, Thomas Gold
and Hermann Bondi in 1948 as the main alternative to the standard Big Bang theory of the universe.
Steady state theory holds that the universe is expanding but that new matter and new galaxies are
continuously created in order to maintain the perfect cosmological principle (the idea that, on the
large scale, the universe is essentially homogenous and isotropic in both space and time), and
therefore has no beginning and no end. The theory was quite popular in the 1950s and 1960s, but fell
out of favour with the discovery of distant quasars and cosmic background radiation in the 1960s.
String:
An object with a one-dimensional spatial extent, length (unlike an elementary particle which is zerodimensional, or point-like). According to string theory, the different fundamental particles of the
standard model can be considered to be just different manifestations of one basic object, a string,
with different vibrational modes. The characteristic length scale of strings is thought to be on the
order of the Planck Length (about 10-35 metres, still too small to be visible in current physical
laboratories), the scale at which the effects of quantum gravity are believed to become significant.
Cosmic string is a similar but separate concept which refers to one-dimensional topological defects,
extremely thin but immensely dense, which are hypothesized to have formed as a result of phase
changes soon after the Big Bang (analogous to the imperfections that form between crystal grains in
solidifying liquids or the cracks that form when water freezes into ice). According to some theories,
such cosmic strings grew as the universe expanded and were instrumental in the accretion
of matterand the formation of galaxy clusters and large-scale structures in the universe.
String Theory (Superstring Theory):
A theory which postulates that the fundamental ingredients of the universe are
tiny strings of matter (on the tiny scale of thePlanck Length of around 10-35 metres) which vibrate in
a space-time of ten dimensions. It is considered one of the most promising of the quantum
gravity theories which hope to unite or unify quantum theory and the General Theory of Relativity,
and apply to both large-scale structures and structures on the atomic scale.
Superstring theory (short for supersymmetric string theory) is a refinement of the more general
theory of strings.
48
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Strong
Nuclear
Force:
Also known as the strong interaction, this is the powerful but short-range force that
holds protons andneutrons together in the nucleus of an atom despite the electromagnetic repulsion of
same-chargeparticles,
as
well
as
holding
together
the
constituent quarks which
comprise neutrons and protons. It is one of the four fundamental forces of physics (along with
the gravitational force, the electromagnetic force and weak nuclear force), and the most powerful,
being 100 times the strength of theelectromagnetic force, about 1013 times as great as that of the weak
force and
about
1038 times
that
of gravity.
The force is mediated by elementary particles called gluons which shuttle back and forth between the
particles being operated on and "glue" the particles together. Unlike the other forces, the strength of
the strong force between quarks becomes stronger with distance, acting like an unbreakable elastic
thread. However, it only operates over a very small distance (less than the size of the nucleus),
outside of which it fades away abruptly.
Supernova:
A cataclysmic explosion caused by the collapse of an old massive star which has used up all its
fuel. For a short time, such an explosion may outshine an entire galaxy of a hundred billion
ordinary stars. It leaves behind a cloud of brightly coloured gas called a nebula, and sometimes a
highly compressed neutron star or even a black hole.
Superposition:
The ability in quantum theory of an object, such as an atom or sub-atomic particle, to be in more than
one quantum state at the same time. For example, an object could technically be in more than one
place simultaneously as a consequence of the wave-like character of microscopic particles.
T
Time Dilation:
The
phenomenon,
predicted
by Albert
Einstein’s Special andGeneral Theories of Relativity, whereby, from the relative context of one
observer's frame of reference, another’s time (for example, an identical clock) appear to run slower.
Thus, moving clocks run more slowly compared to stationary clocks and, the closer the speed of
movement approaches to the speed of light, the greater the effect. Gravitational time dilation is a
related phenomenon, whereby time passes more slowly the higher the local distortion of spacetime due togravity (such as near a black hole, for example).
Uncertainty Principle:
The principle in quantum theory, formulated by Werner Heisenberg in 1926, which holds that the
values of certain pairs of variables cannot BOTH be known exactly, so that the more precisely one
variable is known, the less precisely the other can be known. For example, if the speed
or momentum of a particle is known exactly, then its location must remain uncertain; if its location is
known with certainty, then the particle’s speed or momentum cannot be known. Formulated another
way, relating the unvertainties of energy and time, the uncertainty principle permits the existence of
49
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
ultra-short-lived microscopic particles (virtual particles) in apparently empty space, which briefly
blink into existence and blink out again.
Universe:
Everything that physically exists, including the entirety of space
and time, all forms of matter, energy and momentum, and the physical laws and constants that govern
them. The universe (or cosmos) is usually considered to have begun about 13.7 billion years ago in
a gravitational singulary commonly known as theBig Bang, and has been expanding ever since. Some
have speculated that this universe is just one of many disconnected universes, which are collectively
denoted as the multiverse.
W
Wave-Particle
Duality:
The idea that light (and indeed all matter and energy) is both a wave and a particle, and that
sometimes it behaves like a wave and sometimes it behaves like a particle. It is a central concept
ofquantum theory.
Weak
Nuclear
Force:
Also known as the weak interaction, it is one of the forces experienced by protons and neutrons in
thenucleus of an atom, the other being the strong nuclear force. It is one of the four fundamental
forces of physics (along with the gravitational force, the electromagnetic force and the strong nuclear
force). It is called the weak force because it is about 1013 times weaker than the strong nuclear
force and 1011times weaker than the electromagnetic force, and it is also very short range in its effect.
The weak interaction is mediated by the exchange of heavy elementary particles known as W and Z
bosons. It is responsible for radioactive beta decay (as it converts neutrons into protons) and for the
production of neutrinos.
White
Hole:
The theoretical time reversal of a black hole, which arises as a valid solution in general relativity.
While a black hole acts as a vacuum, drawing in any matter that crosses its event horizon, a white
hole acts as a source that ejects matter from its event horizon.
Wormhole:
A hypothetical “tunnel” through space-time that connects
widely distant regions, thus providing a kind of short-cut throughspace-time. Although there is no
observational evidence for wormholes, they are known to be valid solutions under theGeneral Theory
of Relativity.
50
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Foydalaniladigan asosiy darsliklar va o‘quv qo‘llanmalar ro‘yxati
Asosiy adabiyotlar
1. David Halliday, Robert Resnick, Jear “Fundamentals of physics!”, USA, 2011.
2. Douglas C. Giancoli “Physics Principles with applications”, USA, 2014.
3. Remizov A.N. “Tibbiy va biologik fizika” T. Ibn Sino, 2005.
4. Ulug‘murodov N.X. «Fizikadan praktikum», M., “Fan”, 2005.
5. Bozorova S. Fizika, optika, atom va yadro. Toshkent Aloqachi 2007
6. Gevorkyan A. Kurs fiziki.
7. Sultonov E. “Fizika kursi” (darslik) Fan va ta’lim 2007.
8. O.Qodirov.”Fizika kursi” (o‘quv qo‘llanma) Fan va ta’lim 2005.
9. Ulug‘murodov N.X. (2-nashr)
Qo‘shimcha adabiyotlar.
1. V.A. Timanyuk i dr. “Biofizika”. Visshaya shkola. Kiev, 2004.
2. V.O.Samoylov “Meditsinskaya biofizika”Spetslit., Sankt-Peterburg, 2007
3. G.A.Bordovskiy “Fizicheskie osnovi estestvoznaniya”, ROFA, 2004.
4. Ahmadjanov O.I. Fizika kursi. 1,2,3-qism.-T.; O‘qituvchi, 1987., 1988., 1989
5. Abdullaev G.A. Fizika. – T.; O‘qituvchi, 1989y. – 296 b.
6. Tursunov S., Kamolov J. «Umumiy fizika kursi».-Toshkent,1996 y.
7. N.Norboev, X.Arg‘inboev, X.Abdullaev «Fizikadan amaliy mashg‘ulotlar».-Toshkent,
1993y.
8. Ulug‘murodov N.X. Fizika(mexanika, molekulyar fizika, elektr). – Ma’ruzalar matni. –
Toshkent. 2001y.
9. Ulug‘murodov N.X. Fizika (tebranishlar va to‘lqinlar, optika, atom va yadro).– Ma’ruzalar
matni. – Toshkent. 2001y.
10. N.X.Ulug‘murodov va boshqalar, «Fizika va biofizikadan laboratoriya ishlari uchun
uslubiy qo‘llanma». – Toshkent, 1995y.
11. Raxmatullaev M.N. «Umumiy fizika kursi».-1995 y.
12. Essaulova I.A i dr. “Rukovodstvo k laboratornыm rabotam po meditsinskoy i
biologicheskoy fizike”. M.,“Vыsshaya shkola” 1987.
51
ТОШКЕНТ ФАРМАЦЕВТИКА
ИНСТИТУТИ
ТАШКЕНТСКИЙ ФАРМАЦЕВТИЧЕСКИЙ
ИНСТИТУТ
МОДУЛЬ ФИЗИКА
СИЛЛАБУС
Internet saytlari.
1. http://www.Ziyonet.uz
2. Fizikon [email protected]
3. http: //www. Pharmi.uz
52
Similar