Download Continuous in bi topological Space

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Grothendieck topology wikipedia , lookup

3-manifold wikipedia , lookup

General topology wikipedia , lookup

Covering space wikipedia , lookup

Fundamental group wikipedia , lookup

Transcript
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
๐œน- Continuous in bi topological Space By
Gem-set
Iktifa Diaa Jaleel
Open Educational CollegeMathematics Department , Iraq .
[email protected]
Abstract
The study of a new type of continuity in bi topological space by Gem-set is introduced as .
1. Basic definition . 2. ๐›ฟ- -continuous on (๐›ฟ- -open , ๐›ฟ- -closed , ๐›ฟ- -interior , ๐›ฟ- -closure) in
bi topological space) , 3. ๐›ฟ- -continuous on separation Axioms in bi topological space . with proof of
some theorem .
keywords: Gem-set, Bi topological, Theorem
โ€ซุงู„ุฎุงู„ุตุฉโ€ฌ
โ€ซู…ู† ุฎุงู„ู„ ุฏุฑุงุณุชูŠ ู„ู…ูู‡ูˆู… ((ู…ุฌู…ูˆุนุฉ ุงู„ุฌูˆู‡ุฑุฉ)) ุชูˆุตู„ุช ุงู„ู‰ ู†ูˆุน ุฌุฏูŠุฏ ู…ู† ุงุงู„ุณุชู… ุงุฑุฑูŠุฉ ููŠ ุงู„ูุถุงุกุงุช ุงู„ุซู†ุงุฆูŠุฉ ุงู„ุชุจูˆู„ูˆุฌูŠุงโ€ฌ
โ€ซุจูˆุงุณุทุฉ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฌูˆู‡ุฑุฉ ูˆู‚ุฏ ู‚ู…ุช ุจุฃุซุจุงุช ุจุนุถ ุงู„ู†ุธุฑูŠุงุช ูˆุงู„ุฎุตุงุฆุต ุงู„ุฎุงุตุฉ ุจุงุงู„ุณุชู… ุงุฑุฑูŠุฉ ูˆูƒุฐู„ูƒ ุจุฏูŠู‡ูŠุงุช ุงู„ูุตู„ ุจุงุงู„ุนุชู…ุงุฏ ุนู„ู‰โ€ฌ
โ€ซุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฌูˆู‡ุฑุฉโ€ฌ
.โ€ซ ุงู„ุซู†ุงุฆูŠุฉ ุงู„ุชุจูˆู„ูˆุฌูŠุง ู†ุธุฑูŠุฉโ€ฌ,โ€ซุงู„ุฌูˆู‡ุฑุฉ ุงู„ูุถุงุกุงุชโ€ฌ, โ€ซ ุงู„ู…ุฌู…ูˆุนุฉโ€ฌ:โ€ซุงู„ูƒู„ู…ุงุช ุงู„ู…ูุชุงุญูŠุฉโ€ฌ
Introduction
This research establishes a relation between bi topological spaces , initiated by Kelly
(1963) .
Defined as : A set equipped with two topologies is called a bi topological
space , denoted by (๐‘‹, ๐œ, ฮฉ) where (๐‘‹, ๐œ) , (๐‘‹, ฮฉ) are two topological space defined on
๐‘ฅ
X and โˆ-Gem set in topological space , define ๐ดโˆ— with respect to space (๐‘‹, ๐œ) as
๐‘ฅ
follows ๐ดโˆ— = {๐‘ฆ โˆˆ ๐‘‹; ๐บ โˆฉ ๐ด โˆ‰ ฮ™๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐บ โˆˆ ๐œ(๐‘ฆ)} is called " Gem-set " in
topological space .
๐‘ฅ
A new definition for ๐›ฟ- Gem-set in bi topological space define ๐ด =
{๐‘ฆ โˆˆ ๐‘‹: ๐บ โˆฉ ๐ด โˆ‰ ฮ™๐‘ฅ , ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐บ โˆˆ ๐œ(๐‘ฆ) ๐‘œ๐‘Ÿ ฮฉ(y)} from the relation above , the
following generalization is formulated between โˆ- Gem-set in topological space and
๐›ฟ -Gem-set in bi topological space .
And the research consists of basic definition and ๐›ฟ - continuous in bi
topological space by Gem-sets
(๐›ฟ- -open , ๐›ฟ- -closed , ๐›ฟ- -interior , ๐›ฟ- -closed)
List of symbols
Symbols
๐‘ฅ
๐ดโˆ—
๐‘ฅ
๐‘๐‘Ÿโˆ— (๐ด)
๐ด
๐‘ฅ
๐‘ฅ
๐‘๐‘Ÿ (๐ด)
๐œ(๐‘ฆ)
Description
โˆ-Gem set in (๐‘‹, ๐œ)
๐‘ฅ
๐ดโˆ— โˆช ๐ด
โˆ-Gem set in (๐‘‹, ๐œ, ฮฉ)
๐ด
๐‘ฅ
โˆช๐ด
The collection of all open subsets containing the point y
622
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
ฮ™๐‘ฅ
I deal at point x
๐‘(๐‘ฅ)
The neighborhood system at a point x in (๐‘‹, ๐œ)
๐‘€(๐‘ฅ)
The neighborhood system at a point x in (๐‘‹, ฮฉ)
๐›ฟ- -cl(๐‘ฅ)
The collection of all ๐›ฟ -close subset in (๐‘‹, ๐œ, ฮฉ)
๐›ฟ- -o(๐‘ฅ)
The collection of all ๐›ฟ -open subset in (๐‘‹, ๐œ, ฮฉ)
๐œ-int(๐ด)
The set of all interior point of A in (๐‘‹, ๐œ)
ฮฉ-cl(๐ด)
The set of all closure subsets A of (๐‘‹, ฮฉ)
๐‘“: ๐‘ฅ โ†’ ๐‘ฆ
Single-valued function
1. Basic Definitions
1.1 Definition by Kelly (1963):
A set equipped with two topologies is called a bi topological space , denoted
by (๐‘‹, ๐œ, ฮฉ) where (๐‘‹, ๐œ) , (๐‘‹, ฮฉ) are two topological spaces defined on X.
1.2 Definition by Noiril (1974) :
Let (๐‘‹, ๐œ) be a topological space , and ๐ด โŠ‚ ๐‘‹ , A is said to be โˆ-open set iff
๐ด โŠ‚ ๐ด๐‘œโˆ’๐‘œ .
1.3 Definition
Let (๐‘‹, ๐œ, ฮฉ) be a bi topological space . and A be a subset of X A is said to be
๐›ฟ-open set iff ๐ด โŠ‚ ๐œ-int (ฮฉ-cl(๐œ-int(๐ด))) .
1)
1.4 Definition (Manoharan and Thangarelu , 2013) :
Let X be a non-empty set , A family I of subset of X is an ideal on X if :
i๐ด โˆˆ ๐ผ and ๐ต โŠ† ๐ด , then ๐ต โˆˆ ๐ผ (heredity)
ii๐ด, ๐ต โˆˆ ๐ผ , then ๐ด โˆช ๐ต โˆˆ ๐ผ (finite additivity)
1.5 Definition :
Let (๐‘‹, ๐œ) be a topological space with an ideal I on X , Then for any subset A
of X , ๐ดโˆ— (๐ผ, ๐œ) = {๐‘ฅ โˆˆ ๐‘‹: ๐‘ˆ โˆฉ ๐ด โˆˆ ๐ผ ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ˆ โˆˆ ๐‘(๐‘ฅ)} is called the local function
of A with respect to ๐ผ and ๐œ , simply write ๐ดโˆ— (๐ผ, ๐œ) is case then is no chance for
confusion . Also , cl*(๐ด) = ๐ด โˆช ๐ดโˆ— defines kuratowski closere operator for topology
๐œ โˆ— which is a finer then ๐œ for a topological space (๐‘‹, ๐œ) and ๐‘ฅ โˆˆ ๐‘‹ , the ideal ๐ผ๐‘ฅ [25][4]
define by ๐ผ๐‘ฅ = {๐บ โˆˆ ๐‘‹: ๐‘ฅ โˆˆ ๐บ ๐‘ } .
1.6 Definition(AL-Swidi and AL-Nafee ,2013) :
๐‘ฅ
Let (๐‘‹, ๐œ) be a topological space , ๐ด โŠ† ๐‘‹ and ๐‘ฅ โˆˆ ๐‘‹ Define ๐ดโˆ— with respect to
๐‘ฅ
๐‘ฅ
space (๐‘‹, ๐œ) as follows : ๐ดโˆ— = {๐‘ฆ โˆˆ ๐‘‹: ๐บ โˆฉ ๐ด โˆ‰ ๐ผ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐บ โˆˆ ๐œ(๐‘ฆ)} . A set ๐ดโˆ—
๐‘ฅ
๐‘ฅ
๐‘ฅ
is called "Gem-set" we write the ๐‘๐‘Ÿ โˆ— (๐ด) = ๐ดโˆ— โˆช ๐ด . Thus ๐‘๐‘Ÿ โˆ— (๐น) โŠ† ๐‘๐‘™(๐น)
A new definition for ๐›ฟ- -open set in bi topological space.
623
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
1.7 Definition :
Let (๐‘‹, ๐œ, ฮฉ) be a bi topological space with an ideal I on X. for any subset A of
X,
๐ด (๐ผ, ๐œ, ฮฉ) = {๐‘ฅ โˆˆ ๐‘‹; ๐‘ˆ โˆฉ ๐ด โˆ‰ ๐ผ ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ˆ โˆˆ ๐‘(๐‘ฅ) ๐‘–๐‘› (๐‘‹, ๐œ) ๐‘œ๐‘Ÿ ๐‘ˆ โˆˆ
๐‘€(๐‘ฅ) ๐‘–๐‘› (๐‘‹, ฮฉ)} is called the local function of A with respect to I and ๐œ or with
respect to I and ฮฉ
Also ฮฉ-cl (๐ด) = ๐ด โˆช ๐ด defines kuratowski chosere operator for ๐œ โˆ— is finer
than ๐œ .
For a bi topological space (๐‘‹, ๐œ, ฮฉ) and ๐‘ฅ โˆˆ ๐‘‹ , the ideal ๐ผ๐‘ฅ define by ๐ผ๐‘ฅ =
{๐บ โŠ† ๐‘‹, ๐‘ฅ โˆˆ ๐บ ๐‘ } .
1.8 Definition :
๐‘ฅ
Let (๐‘‹, ๐œ, ฮฉ) be a bi topological space , ๐ด โŠ† ๐‘‹ and ๐‘ฅ โˆˆ ๐‘‹ , Define ๐ด with
respet to space (๐‘‹, ๐œ, ฮฉ) as follows :
๐‘ฅ
๐ด = {๐‘ฆ โˆˆ ๐‘‹: ๐บ โˆฉ ๐ด โˆ‰ ๐ผ๐‘ฅ , ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐บ โˆˆ ๐œ(๐‘ฆ) ๐‘œ๐‘Ÿ ๐บ โˆˆ ฮฉ(๐‘ฆ)}
๐‘ฅ
๐‘ฅ
๐‘ฅ
A set ๐ด
is called "Gem-set" . we write the ๐‘๐‘Ÿ (๐ด) = ๐ด โˆช ๐ด Thus
๐‘ฅ
๐‘๐‘Ÿ (๐น) โŠ† ฮฉ-cl(๐น) .
1.9 Definition
A subset A of an bi topological space (๐‘‹, ๐œ, ฮฉ) is called
i.
๐›ฟ-open if ๐ด โŠ‚ ๐œ-int(ฮฉ-cl(๐œ-int(A)))
ii.
๐›ฟ-open if ๐ด โŠ‚ ๐œ-int(ฮฉ-cl (๐œ-int(A)))
The collection of all ๐›ฟ-open sets in (ii) is denoted by ๐›ฟ- -o(๐‘ฅ) and the
collection of all ๐›ฟ-open sets is denoted by ๐›ฟ-o(๐‘ฅ)
1.10 Definition
A bi topological space (๐‘‹, ๐œ, ฮฉ) is said to be ๐›ฟ- -closed space if and only if
each non-empty subset A of X is ๐›ฟ- -closed subset .
1.11 Definition
A bi topological space (๐‘‹, ๐œ, ฮฉ) is said to be ๐›ฟ- -perfected space if and only if
each non-empty subset A of X is ๐›ฟ- - perfected subset .
1.12 Lemma
Let (๐‘‹, ๐œ, ฮฉ) be a bi topological space with I and J being ideal son X, and let A
and B be two subset X then
i๐ด โŠ† ๐ต then ๐ด โŠ† ๐ต
ii๐ผ โŠ† ๐ฝ then ๐ด (๐ฝ) โŠ† ๐ต (๐ผ)
iii๐ด = ฮฉ-cl(๐ด ) โŠ† ฮฉ- cl(๐ด)
iv(๐ด ) โŠ† ๐ด
(๐ด โˆช ๐ต) = ๐ด โˆช ๐ต
vvi๐ด โˆ’ ๐ต = (๐ด โˆ’ ๐ต) โˆ’ ๐ต โŠ† (๐ด โˆ’ ๐ต)
viiFor every ๐ผ1 โˆˆ ๐ผ , (๐ด โˆ’ ๐ผ1 ) = (๐ด โˆ’ ๐ผ)
If this is casy to prove by the properties in Lemma (1.12) with respect to Gem-sets .
1.13 Definition
Let (๐‘‹, ๐œ, ฮฉ) be a bi topological space and ๐ด โŠ† ๐‘‹ , defined ๐‘๐‘Ÿ
๐ด , for each ๐‘ฅ โˆˆ ๐‘‹ .
624
๐‘ฅ
(๐ด) = ๐ด
๐‘ฅ
โˆช
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
1.14 Definition
A subset A of a bi topological space (๐‘‹, ๐œ, ฮฉ) is called perfected set if ๐ด
๐ด , for each ๐‘ฅ โˆˆ ๐‘‹ .
๐‘ฅ
โŠ†
1.15 definition
A bi topological space (๐‘‹, ๐œ, ฮฉ) is said to be perfected space if and only if ,
each non-empty subset A if y is perfected subset .
2. ๐œน- - continuous map in bi topological space
2.1 ๐œน- - continuous on (๐œน- - open , ๐œน- - closed , ๐œน- -interior , ๐œน- closure) in bi topological space
2.1.1 Definition
Let (๐‘‹, ๐œ, ฮฉ) and (๐‘Œ, ๐œฬ , ฮฉฬ) be a bi topological space , A mapping ๐‘“: ๐‘‹ โŸถ ๐‘Œ is
said to be ๐›ฟ- -continuous at ๐‘ฅโˆ˜ โˆˆ ๐‘‹ ๐‘–๐‘“๐‘“ for every ๐›ฟ- -open set V in Y containing
๐‘“(๐‘ฅโˆ˜ ) there exist ๐›ฟ- -open set U in Y containing ๐‘ฅโˆ˜ such that ๐‘“(๐‘ˆ) โŠ‚ ๐‘‰ .
2.1.2 Definition :
Let ๐‘“: ๐‘‹ โŸถ ๐‘Œ be a mapping , then
(a)
๐‘“ is said to be ๐›ฟ- -open mapping ๐‘–๐‘“๐‘“ ๐‘“(๐บ) is ๐›ฟ- -open in Y for
every ๐›ฟ- -open set G in X .
(b)
F is ๐›ฟ- -closed ๐‘–๐‘“๐‘“ ๐‘“(๐น) is ๐›ฟ- -closed in Y for every ๐›ฟ- -closed set
F in X .
(c)
๐‘“ is ๐›ฟ- -continuous ๐‘–๐‘“๐‘“ ๐‘“ is ๐›ฟ- -open and ๐›ฟ- -closed .
(d)
๐‘“ is ๐›ฟ- -homeomorphism iff
i๐‘“ is bijective (1-1 , onto)
ii๐‘“ and ๐‘“ โˆ’1 are ๐›ฟ- -continuous where (๐‘‹, ๐œ, ฮฉ) , (๐‘Œ, ๐œฬ , ฮฉฬ) are
two bi topological space .
2.1.3 Example (1)
Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} , ๐œ = {โˆ…, ๐‘‹, {๐‘Ž}} , ฮฉ = {โˆ…, ๐‘‹}
(๐‘‹, ๐œ) , (๐‘‹, ฮฉ) are two topologies on X
Then (๐‘‹, ๐œ, ฮฉ) is a bi topological space , such that
๐›ฟ- -o(๐‘ฅ) = {ฮฆ, ๐‘‹, {๐‘Ž}, {๐‘Ž, ๐‘}, {๐‘Ž, ๐‘}}
And let ๐‘Œ = {1,2,3} , ๐œฬ = {โˆ…, ๐‘Œ, {1}} , ฮฉฬ = {โˆ…, ๐‘Œ}
(๐‘Œ, ๐œฬ ) , (๐‘Œ, ฮฉฬ) are two topologies on ๐‘Œ
Then (๐‘Œ, ๐œฬ , ฮฉฬ) is a bi topological space , such that
๐›ฟ- -o(๐‘ฆ) = {โˆ…, ๐‘Œ, {1}, {1,2}, {1,3}}
Define ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) by ๐‘“(๐‘Ž) = 1, ๐‘“(๐‘) = 2, ๐‘“(๐‘) = 3
Then ๐‘“ is ๐›ฟ- -continuous and ๐›ฟ- -open set because
๐‘“ โˆ’1 (๐‘) = {๐‘Ž, ๐‘, ๐‘} = ๐‘‹ is ๐›ฟ- -open in ๐‘‹ , and ๐‘“ โˆ’1 (โˆ…) = โˆ… is ๐›ฟ- -open in ๐‘‹ ,
similarly the other cases ๐‘“ โˆ’1 ({1}), ๐‘“ โˆ’1 ({1,2}), ๐‘“ โˆ’1 ({1,3}) are ๐›ฟ- -open in ๐‘Œ , there
fore ๐‘“ is ๐›ฟ- -continuous . and since ๐‘“({๐‘Ž}) = {1} is ๐›ฟ- -open in ๐‘Œ and ๐‘“({โˆ…}) = โˆ…
is ๐›ฟ- -open in ๐‘Œ , similarly the other cases ๐‘“({๐‘ฅ}) , ๐‘“({๐‘Ž, ๐‘}) , ๐‘“({๐‘Ž, ๐‘}) are ๐›ฟ- -open
in ๐‘Œ . therefore ๐‘“ is ๐›ฟ- -open mapping .
2.1.3 Example (2)
Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} , ๐œ = {โˆ…, ๐‘‹, {๐‘Ž}} , ฮฉ = {โˆ…, ๐‘‹, {๐‘}, {๐‘Ž, ๐‘}}
625
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
(๐‘‹, ๐œ) , (๐‘‹, ฮฉ) are two topologies on X
Then (๐‘‹, ๐œ, ฮฉ) is a bi topological space , such that
๐›ฟ- -o(๐‘ฅ) = {โˆ…, ๐‘‹, {๐‘Ž}}
And let ๐‘Œ = {1,2,3} , ๐œฬ = {โˆ…, ๐‘‹, {2}, {1}, {1,2}} ,
ฮฉฬ = {โˆ…, ๐‘‹, {1}, {1,2}}
(๐‘Œ, ๐œฬ ) , (๐‘Œ, ฮฉฬ) are two topologies on ๐‘Œ
Then (๐‘Œ, ๐œฬ , ฮฉฬ) is a bi topological space , such that
๐›ฟ- -o(๐‘ฆ) = {โˆ…, ๐‘Œ, {1}, {2}, {1,2}}
Define ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) by ๐‘“(๐‘Ž) = 1, ๐‘“(๐‘) = ๐‘“(๐‘) = 2
Then ๐‘“ is ๐›ฟ- -open but not ๐›ฟ- -continuous because
๐‘“ โˆ’1 (๐‘Œ) = {๐‘Ž, ๐‘, ๐‘} = ๐‘‹ is ๐›ฟ- -open in ๐‘‹ and ๐‘“ โˆ’1 (โˆ…) = โˆ… is ๐›ฟ- -open in ๐‘‹ .
โˆ’1 ({2})
but ๐‘“
= {๐‘, ๐‘} is not ๐›ฟ- -open in ๐‘‹ , Hence ๐‘“ is ๐›ฟ- -continuous .
And since ๐‘“(๐‘ฅ) = {1,2} is ๐›ฟ- -open in ๐‘Œ , ๐‘“({โˆ…}) = โˆ… is ๐›ฟ- -open in ๐‘Œ .
๐‘“(๐‘Ž) = ({1}) is ๐›ฟ- -open in ๐‘Œ therefore ๐‘“ is ๐›ฟ- -open .
2.1.5 Theorem
Let (๐‘‹, ๐œ, ฮฉ) and (๐‘Œ, ๐œฬ , ฮฉฬ) be bi topological space , then a mapping ๐‘“: ๐‘‹ โ†’ ๐‘Œ is
๐›ฟ- -continuous ๐‘–๐‘“๐‘“ for every ๐‘ฅ โˆˆ ๐‘‹ the inverse image under ๐‘“ of every ๐›ฟ- -open
๐‘‰ โˆ˜ ๐‘“ ๐‘“(๐‘ฅ) is ๐›ฟ- -open set of ๐‘Œ .
Proof
Let ๐‘“ is ๐›ฟ- '-continuous and ๐‘‰ is ๐›ฟ- -open in ๐‘Œ to prove ๐‘“ โˆ’1 (๐‘‰) is ๐›ฟ- open in ๐‘‹ . If ๐‘“ โˆ’1 (๐‘‰) = โˆ… so it is ๐›ฟ- -open in ๐‘‹ . If ๐‘“ โˆ’1 (๐‘‰) โ‰  โˆ… , Let ๐‘ฅ โˆˆ ๐‘“ โˆ’1 (๐‘‰) ,
then ๐‘“(๐‘ฅ) โˆˆ ๐‘‰ , by definition of ๐›ฟ- -continuous there exists ๐›ฟ- -open ๐บ๐‘ฅ in ๐‘‹
containing ๐‘ฅ such that ๐‘“(๐บ๐‘ฅ ) โŠ‚ ๐‘‰ .
โˆด ๐‘ฅ โˆˆ ๐บ๐‘ฅ โŠ‚ ๐‘“ โˆ’1 (๐‘‰) , Hence ๐‘“ โˆ’1 (๐‘‰) is ๐›ฟ- -open set in ๐‘‹ .
Conversely
Let ๐‘“ โˆ’1 (๐‘‰) is ๐›ฟ- -open set in ๐‘‹ , for each ๐‘‰ is ๐›ฟ- -open set in ๐‘Œ to prove ๐‘“
is ๐›ฟ- -continuous .
Let ๐‘ฅ โˆˆ ๐‘‹ and ๐‘‰ is ๐›ฟ- -open set in ๐‘Œ containing ๐‘“(๐‘ฅ) so ๐‘“ โˆ’1 (๐‘‰) is ๐›ฟ-open in
๐‘‹ containing ๐‘ฅ and ๐‘“(๐‘“ โˆ’1 (๐‘‰)) โŠ‚ ๐‘‰ . Then ๐‘“ is ๐›ฟ- -continuous on ๐‘‹ .
2.1.6 Theorem
Let (๐‘‹, ๐œ, ฮฉ) and (๐‘Œ, ๐œฬ , ฮฉฬ) be bi topological space , a mapping ๐‘“: ๐‘‹ โ†’ ๐‘Œ is ๐›ฟ-continuous ๐‘–๐‘“๐‘“ the inverse image under ๐‘“ โˆ˜ ๐‘“ every ๐›ฟ- -closed set in ๐‘Œ is ๐›ฟ- closed set in ๐‘‹ .
Proof : (Obvious)
2.1.7 Theorem
A mapping ๐‘“: ๐‘‹ โ†’ ๐‘Œ is ๐›ฟ- -continuous ๐‘–๐‘“๐‘“ ๐‘“(๐›ฟ- -cl(๐ด))โŠ‚ ๐›ฟ- -cl(๐‘“(๐ด))
for every ๐ด โŠ‚ ๐‘‹ , where (๐‘‹, ๐œ, ฮฉ) and (๐‘Œ, ๐œฬ , ฮฉฬ) are two bi topological space .
Proof
Let ๐‘“ be ๐›ฟ- -continuous . Since ๐›ฟ- -cl(๐‘“(๐ด)) is ๐›ฟ- -closed set in ๐‘Œ โˆด ๐‘“ โˆ’1 (๐›ฟ-cl(๐‘“(๐ด))) is ๐›ฟ- -closed set in ๐‘‹ by [2.1.6] therefore ๐›ฟ- -cl(๐‘“ โˆ’1 (๐›ฟ- -cl(๐‘“(๐ด))) =
๐‘“ โˆ’1 (๐›ฟ- -cl(๐‘“(๐ด)))โ€ฆ(1)
Now
๐‘“(๐ด) โŠ‚ ๐›ฟ-cl(๐‘“(๐ด)) , ๐ด โŠ‚ ๐‘“ โˆ’1 (๐‘“(๐ด)) โŠ‚ ๐‘“ โˆ’1(๐›ฟ- -cl(๐‘“(๐ด))) .
Then ๐›ฟ- -cl(๐ด) โŠ‚ ๐‘“ โˆ’1(๐›ฟ- -cl(๐‘“(๐ด)))= ๐‘“ โˆ’1(๐›ฟ- -cl(๐‘“(๐ด)))by1
626
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
Then ๐‘“(๐›ฟ- -cl(๐ด)) โŠ‚ ๐›ฟ- -cl(๐‘“(๐ด)) .
Conversely :
Let ๐‘“(๐›ฟ- -cl(๐ด)) โŠ‚ ๐›ฟ- -cl(๐‘“(๐ด)) for every ๐ด โŠ‚ ๐‘‹
Let ๐น be any ๐›ฟ- -closed set in ๐‘Œ , So that ๐›ฟ-cl(๐น) = ๐น
Now , ๐‘“ โˆ’1 (๐น) โŠ‚ ๐‘‹ , by hypothesis .
๐‘“(๐›ฟ- -cl(๐‘“ โˆ’1 (๐น)))โŠ‚ ๐›ฟ- -cl(๐‘“(๐‘“ โˆ’1 (๐น))) โŠ‚ ๐›ฟ- -cl(๐น) = ๐น
Therefore ๐›ฟ- -cl(๐‘“ โˆ’1 (๐น)) โŠ‚ ๐‘“ โˆ’1 (๐น)
But ๐‘“ โˆ’1 (๐น) โŠ‚ ๐›ฟ- -cl(๐‘“ โˆ’1 (๐น)) always
Hence ๐›ฟ-cl(๐‘“ โˆ’1 (๐น)) โŠ‚ ๐‘“ โˆ’1 (๐น) and ๐‘“ โˆ’1 (๐น) are ๐›ฟ- -closed set in ๐‘‹ Hence ๐‘“ is ๐›ฟ- continuous by theorem [2.1.6]
2.1.8 Theorem
A mapping ๐‘“: ๐‘‹ โ†’ ๐‘Œ is ๐›ฟ- -continuous ๐‘–๐‘“๐‘“ . ๐›ฟ- -cl(๐‘“ โˆ’1 (๐ต)) โŠ‚ ๐‘“ โˆ’1 (๐›ฟ- cl(๐ต)) for every ๐ต โŠ‚ ๐‘Œ , Where (๐‘‹, ๐œ, ฮฉ) and (๐‘Œ, ๐œฬ , ฮฉฬ) are two bi topological space .
Proof : (Obvious)
2.1.9 Theorem
A mapping ๐‘“: ๐‘‹ โ†’ ๐‘Œ is ๐›ฟ- -continuous ๐‘–๐‘“๐‘“
๐‘“ โˆ’1 (๐›ฟ- -int(๐ต)) โŠ‚ ๐›ฟ- -int(๐‘“ โˆ’1 (๐ต)) for every ๐ต โŠ‚ ๐‘Œ , where (๐‘‹, ๐œ, ฮฉ) and
(๐‘Œ, ๐œฬ , ฮฉฬ) are two bi topological space .
Proof : (Obvious)
2.1.10 Theorem
Let ๐‘‹, ๐‘Œ and ๐‘ be a bi topological space and the mappings ๐‘“: ๐‘‹ โ†’ ๐‘Œ and
๐‘”: ๐‘Œ โ†’ ๐‘ be ๐›ฟ- -continuous then the composition map ๐‘” โˆ˜ ๐‘“: ๐‘‹ โ†’ ๐‘ is ๐›ฟ- continuous .
Proof : (Obvious) (using definition 2.1.2 c+d)
2.2 ๐œน- -continuous on separation Axioms in Bi topological space
2.2.1 Theorem
Let (๐‘Œ, ๐œฬ , ฮฉฬ) be ๐›ฟ- -To space , if ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -continuous
1-1 function . Then (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -To space .
Proof :
Let ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘‹ , ๐‘ฅ1 โ‰  ๐‘ฅ2 , since ๐‘“ is 1-1 function , then ๐‘“(๐‘ฅ1 ) โ‰  ๐‘“(๐‘ฅ2 ) ,
๐‘“(๐‘ฅ2 ) โˆˆ ๐‘Œ , and ๐‘Œ is ๐›ฟ- -To space , then there exists ๐›ฟ- -open set ๐บ in ๐‘Œ such that
๐‘“(๐‘ฅ1 ) โˆˆ ๐บ , ๐‘“(๐‘ฅ1 ) โˆ‰ ๐บ So ๐‘ฅ1 โˆˆ ๐‘“ โˆ’1 (๐บ) , ๐‘ฅ2 โˆˆ ๐‘“ โˆ’1 (๐บ) .
โˆด ๐‘“ โˆ’1 (๐บ) is ๐›ฟ- -open set in ๐‘Œ , Then (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -To space .
2.2.2 Theorem
Let ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) be an ๐›ฟ- -continuous ๐›ฟ- -open 1-1 and onto
function , If (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ-To space then (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -To space .
Proof :
Suppose that ๐‘ฆ1 , ๐‘ฆ2 โˆˆ ๐‘Œ , ๐‘ฆ1 โ‰  ๐‘ฆ2 , since f is onto , there exists ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘‹ ,
such that ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) and since ๐‘“ is 1-1 , then ๐‘ฅ1 โ‰  ๐‘ฅ2 , since ๐‘‹ is ๐›ฟ-To
space . There exists ๐›ฟ- -open set ๐บ , such that ๐‘ฅ1 โˆˆ ๐บ , ๐‘ฅ2 โˆ‰ ๐บ .
Hence ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) โˆˆ ๐‘“(๐บ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) โˆ‰ ๐‘“(๐บ) , since ๐‘“ is ๐›ฟ- -open
function , then ๐‘“(๐บ) is ๐›ฟ- -open set ๐‘Œ . there fore (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -To space .
627
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
2.2.3 Theorem
Let (๐‘Œ, ๐œฬ , ฮฉฬ) be ๐›ฟ-T1 space . if ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -continuous 1-1
function , then ๐‘‹ is ๐›ฟ- -T1 space .
Proof
Let ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘‹ , ๐‘ฅ1 โ‰  ๐‘ฅ2 , since ๐‘“ is 1-1 , ๐‘“(๐‘ฅ1 ) โ‰  ๐‘“(๐‘ฅ2 ) , ๐‘“(๐‘ฅ1 ) , ๐‘“(๐‘ฅ2 ) โˆˆ ๐‘Œ ,
๐‘Œ is ๐›ฟ- -T1 space , then there exists ๐‘ˆ1 , ๐‘ˆ2 ๐›ฟ- -open set in ๐‘Œ such that ๐‘“(๐‘ฅ1 ) โˆˆ ๐‘ˆ1 ,
but ๐‘“(๐‘ฅ2 ) โˆˆ ๐‘ˆ1 and ๐‘“(๐‘ฅ2 ) โˆˆ ๐‘ˆ2 but ๐‘“(๐‘ฅ1 ) โˆ‰ ๐‘ˆ2 .
Then ๐‘ฅ1 โˆˆ ๐‘“ โˆ’1 (๐‘ˆ1 )but ๐‘ฅ2 โˆ‰ ๐‘“ โˆ’1 (๐‘ˆ1 ) ; and ๐‘ฅ2 โˆˆ ๐‘“ โˆ’1 (๐‘ˆ2 ), but ๐‘ฅ1 โˆ‰ ๐‘“ โˆ’1 (๐‘ˆ2 );
โˆ’1 (๐‘ˆ )
โˆ’1
and ๐‘“
1 , ๐‘“ (๐‘ˆ2 ) are ๐›ฟ- -open set in ๐‘‹ Hence (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -T1 space .
2.2.4 Theorem
Let ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) be an ๐›ฟ- -continuous 1-1 and onto , ๐›ฟ- -open
function . If (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -T1 space then (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -T1 space .
Proof
Suppose ๐‘ฆ1 , ๐‘ฆ2 โˆˆ ๐‘Œ , ๐‘ฆ1 โ‰  ๐‘ฆ2 , since ๐‘“ is onto , there exists ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘‹ , Such
that ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) , since ๐‘“ is 1-1 then ๐‘ฅ1 โ‰  ๐‘ฅ2 โˆˆ ๐‘‹ , ๐‘“(๐‘ฅ1 ) โ‰  ๐‘“(๐‘ฅ2 ) , and
๐‘‹ is ๐›ฟ- -T1 space , there exists ๐›ฟ- -open sets ๐บ , ๐ป such that ๐‘ฅ1 โˆˆ ๐บ but ๐‘ฅ2 โˆ‰ ๐บ and
๐‘ฅ2 โˆˆ ๐ป but ๐‘ฅ1 โˆ‰ ๐ป .
Hence ๐‘“(๐‘ฅ1 ) โˆˆ ๐‘“(๐บ) , ๐‘“(๐‘ฅ2 ) โˆˆ ๐‘“(๐ป) , since ๐‘“ is ๐›ฟ- -open function , Hence
๐‘“(๐บ) , ๐‘“(๐ป) are ๐›ฟ- -open sets of ๐‘Œ .
๐‘ฆ1 โˆˆ ๐‘“(๐บ) , but ๐‘ฆ2 โˆ‰ ๐‘“(๐บ) and ๐‘ฆ2 โˆˆ ๐‘“(๐ป) , but ๐‘ฆ1 โˆ‰ ๐‘“(๐ป)
Then (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -T1 space .
2.2.5 theorem
Let (๐‘Œ, ๐œฬ , ฮฉฬ) be ๐›ฟ- -T2 space . if ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -continuous 11 function , then (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -T2 space .
Proof
Let ๐‘ฅ1 โ‰  ๐‘ฅ2 โˆˆ ๐‘‹ , since ๐‘“ is 1-1 , ๐‘“(๐‘ฅ1 ) โ‰  ๐‘“(๐‘ฅ2 )
Let ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) , ๐‘ฆ1 โ‰  ๐‘ฆ2 . since ๐‘Œ is ๐›ฟ- -T2 space , there exists
two ๐›ฟ- -open sets ๐บ . ๐ป in ๐‘Œ , such that ๐‘ฆ1 โˆˆ ๐บ , ๐‘ฆ2 โˆˆ ๐ป , ๐บ โˆฉ ๐ป = โˆ… .
Hence ๐‘ฅ1 โˆˆ ๐‘“ โˆ’1 (๐บ) , ๐‘ฅ2 โˆˆ ๐‘“ โˆ’1 (๐ป) since ๐‘“ is ๐›ฟ- -continuous and
โˆ’1 (๐บ)
๐‘“
, ๐‘“ โˆ’1 (๐ป) ๐›ฟ- -open sets in ๐‘‹ .
Also ๐‘“ โˆ’1 (๐บ) โˆฉ ๐‘“ โˆ’1 (๐ป) = ๐‘“ โˆ’1 (๐บ โˆฉ ๐ป) = ๐‘“ โˆ’1 (โˆ…) = โˆ…
Thus (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -T2 space .
2.2.6 Theorem
Let ๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) be an ๐›ฟ- -continuous 1-1 and onto , ๐›ฟ- -open
function . If (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -T2 space then (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -T2 space .
Proof
Let ๐‘ฆ1 โ‰  ๐‘ฆ2 โˆˆ ๐‘Œ , since ๐‘“ is 1-1 and onto , there exists ๐‘ฅ1 โ‰  ๐‘ฅ2 โˆˆ ๐‘‹ , Such
that ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) , since ๐‘‹ is ๐›ฟ- -T2 space , then there exists ๐›ฟ- -open
sets ๐บ, ๐ป such that ๐‘ฅ1 โˆˆ ๐บ , ๐‘ฅ2 โˆˆ ๐ป , ๐บ โˆฉ ๐ป = โˆ… , since ๐‘“ is ๐›ฟ- -open mapping , then
๐‘“(๐บ) , ๐‘“(๐ป) are two ๐›ฟ- -open set in ๐‘Œ and ๐‘“(๐บ โˆฉ ๐ป) = ๐‘“(๐บ) โˆฉ ๐‘“(๐ป) = ๐‘“(โˆ…) = โˆ… .
Also ๐‘ฆ1 = ๐‘“(๐‘ฅ1 ) โˆˆ ๐‘“(๐บ) , ๐‘ฆ2 = ๐‘“(๐‘ฅ2 ) โˆˆ ๐‘“(๐ป) .
Hence (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -T2 space .
2.2.7 Theorem
Let (๐‘‹, ๐œ, ฮฉ) be ๐›ฟ- -regular space and
๐‘“: (๐‘‹, ๐œ, ฮฉ) โ†’ (๐‘Œ, ๐œฬ , ฮฉฬ) be ๐›ฟ- -homeomorphism , Then (๐‘Œ, ๐œฬ , ฮฉฬ) ๐›ฟ- -regular.
628
Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016
Proof
Let ๐น be ๐›ฟ- -closed set in ๐‘Œ , ๐‘ž โˆ‰ ๐น , ๐‘ž โˆˆ ๐‘Œ . since ๐‘“ is 1-1 and onto map ,
then there exists ๐‘ โˆˆ ๐‘‹ such that ๐‘“(๐‘) = ๐‘ž , ๐‘ = ๐‘“ โˆ’1 (๐‘ž) . since ๐‘“ is ๐›ฟ- -continuous
so ๐‘“ โˆ’1 (๐น) is ๐›ฟ- -closed in ๐‘‹ , ๐‘ž โˆ‰ ๐น , ๐‘ = ๐‘“ โˆ’1 (๐‘ž) โˆ‰ ๐‘“ โˆ’1 (๐น) . since (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- regular there exists ๐›ฟ- -open sets ๐บ, ๐ป such that ๐‘ โˆˆ ๐บ , ๐‘“ โˆ’1 (๐น) โŠ‚ ๐ป and ๐บ โˆฉ ๐ป = โˆ….
So ๐‘ž = ๐‘“(๐‘) โˆˆ ๐‘“(๐บ) , ๐น โŠ‚ ๐‘“(๐‘“ โˆ’1 (๐น)) โŠ‚ ๐‘“(๐ป) , since ๐‘“ is ๐›ฟ- -open map ,
hence ๐‘“(๐บ) , ๐‘“(๐ป) are ๐›ฟ- -open sets in ๐‘Œ and ๐‘“(๐บ โˆฉ ๐ป) = ๐‘“(๐บ) โˆฉ ๐‘“(๐ป) = ๐‘“(โˆ…) =
โˆ….
Therefore (๐‘Œ, ๐œฬ , ฮฉฬ) is ๐›ฟ- -regular .
2.2.8 Theorem
๐›ฟ- -normality is bi topological property .
Proof
Let (๐‘‹, ๐œ, ฮฉ) be ๐›ฟ- -normal space and Let (๐‘Œ, ๐œฬ , ฮฉฬ) be ๐›ฟ- -homeomorphic
image of (๐‘‹, ๐œ, ฮฉ) under ๐›ฟ- -homeomorphic ๐‘“ to show that (๐‘Œ, ๐œฬ , ฮฉฬ) is also . ๐›ฟ- normal space .
Let ๐ฟ, ๐‘€ be a pair of dis joint ๐›ฟ- -closed subsets of ๐‘Œ . since ๐‘“ is ๐›ฟ- continuous map , then ๐‘“ โˆ’1 (๐ฟ) and ๐‘“ โˆ’1 (๐‘€) are ๐‘“ is ๐›ฟ- -closed subsets of ๐‘‹ . Also
๐‘“ โˆ’1 (๐ฟ) โˆฉ ๐‘“ โˆ’1 (๐‘€) = ๐‘“ โˆ’1 (๐ฟ โˆฉ ๐‘€) = ๐‘“ โˆ’1 (โˆ…) = โˆ… .
Thus ๐‘“ โˆ’1 (๐ฟ), ๐‘“ โˆ’1 (๐‘€) are disjoint pair of ๐›ฟ- -closed subsets of ๐‘‹ . since the
space (๐‘‹, ๐œ, ฮฉ) is ๐›ฟ- -normal , then there exist ๐›ฟ- -open set ๐บ and ๐ป such that
๐‘“ โˆ’1 (๐ฟ) โŠ‚ ๐บ , ๐‘“ โˆ’1 (๐‘€) โŠ‚ ๐ป and ๐บ โˆฉ ๐ป = โˆ… but ๐‘“ โˆ’1 (๐ฟ) โŠ‚ ๐บ then ๐‘“(๐‘“ โˆ’1 (๐ฟ)) โŠ‚
๐‘“(๐บ) , ๐ฟ โŠ‚ ๐‘“(๐บ) .
Similarly
๐‘€ โŠ‚ ๐‘“(๐ป) , Also since ๐‘“ is an ๐›ฟ- -open mapping ๐‘“(๐บ) and ๐‘“(๐ป) are ๐›ฟ- open subset of ๐‘Œ , such that
๐‘“(๐บ) โˆฉ ๐‘“(๐ป) = ๐‘“(๐บ โˆฉ ๐ป) = ๐‘“(โˆ…) = โˆ…
Thus there exists ๐›ฟ-open subset in ๐‘Œ , ๐บ1 = ๐‘“(๐บ) and ๐ป1 = ๐‘“(๐ป) such that
๐ฟ โŠ‚ ๐บ1 , ๐‘€ โŠ‚ ๐ป1 , and ๐บ1 โˆฉ ๐ป1 = โˆ… .
It follows that (๐‘Œ, ๐œฬ , ฮฉฬ) is also ๐›ฟ- -normal space .
Accordingly , ๐›ฟ- -normality is a bi topological property .
References
AL-Swidi L.A. and AL-Nafee A.B. "New separation Axioms using the ideal of
"Gem-set" in topological space "Mathematical Theory and Moodeling , vol.3(3)
(2013) , pp 60 โ€“ 66 .
Kelly,J.L. , (1963) "General Topology" , Van. Nostrands Princeton .
Manoharan R. and Thangarelu , P. "Some New sets and Topologies in Ideal
Topological space" , chine Journal of Mathematics . Article ID 973608 , pp. 1-6 ,
(2013)
Noiril , T. ; Smashhour, A. ; Khedr F.H.; and A. Hsaanbi N. 1974 .
629