Download New Characterization Of Kernel Set in Topological Spaces

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Orientability wikipedia , lookup

Brouwer fixed-point theorem wikipedia , lookup

Surface (topology) wikipedia , lookup

Sheaf (mathematics) wikipedia , lookup

Covering space wikipedia , lookup

Grothendieck topology wikipedia , lookup

General topology wikipedia , lookup

3-manifold wikipedia , lookup

Fundamental group wikipedia , lookup

Transcript
Archives Des Sciences
Vol 65, No. 9;Sep 2012
New Characterization Of
Kernel Set in Topological Spaces
Luay A. Al-Swidi
Mathematics Department, College of Education For Pure Sciences
University of Babylon
E-mail:[email protected]
Basim Mohammed M.
Mathematics Department, College of Education For Pure Sciences
University of Babylon
E-mail: [email protected]
ABSTRACT:
In this paper we introduce a kernelled point, boundary kernelled point and derived kernelled
point of a subset A of X, and using these notions to define kernel set of topological spaces. Also we
introduce π‘˜π‘Ÿ-topological space .The investigation enables us to present some new separation axioms
between 𝑇0 and 𝑇1 -spaces.
Key: kernelled point, boundary kernelled point, derived kernelled point, Kernel set, weak separation
axioms, 𝑅0 -space.
1. INTRODUCTION AND PRELIMINARIES
In the recent papers kernel of a set A (ker⁑
(𝐴))of a topological space defined as the
intersection of all open superset of 𝐴. [2],[3].
In this paper we introduce that π‘₯ ∈ 𝑋 is a kernelled point of a subset 𝐴 of 𝑋 (Briefly π‘₯ ∈
ker(𝐴)) . Also we present the notions boundary kernelled point of A denoted it π‘₯ ∈ π‘˜π‘Ÿπ‘π‘‘ (𝐴), and π‘₯ is
derived kernelled point of 𝐴 denoted it π‘˜π‘Ÿπ‘‘π‘Ÿ (𝐴), we obtain that the kernel of a set 𝐴 in topological
space(𝑋, 𝑇) is a union of 𝐴 itself with the set of all boundary kernelled points (Briefly π‘˜π‘Ÿπ‘π‘‘ (𝐴)). Also
it is a union of 𝐴 itself with the set of all derived kernelled points (Briefly π‘˜π‘Ÿπ‘‘π‘Ÿ (𝐴)), and we gave some
result of 𝑅0 -space 1 , 2 , [4]], by using these notions.
Also in this paper we introduce kr-topological space iff kernel of a subset A of X is an open
set. Via this kind of topological space we give a new characterization of separation axioms lying
between 𝑇0 and 𝑇1 -spaces.
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ 𝟏. 𝟏 𝟏, 𝟐, πŸ’
A topological space (𝑋, 𝑇) is called an π‘…π‘œ -space if for each open set π‘ˆ and π‘₯ ∈ π‘ˆ
then 𝑐𝑙{π‘₯} βŠ† π‘ˆ.
π‘³π’†π’Žπ’Žπ’‚ 𝟏. 𝟐 [𝟐]
Let (𝑋, 𝑇) be topological space then π‘₯ ∈ 𝑐𝑙 𝑦 𝑖𝑓𝑓 𝑦 ∈ ker π‘₯ . for each π‘₯ β‰  𝑦 ∈ 𝑋
π‘»π’‰π’†π’π’“π’†π’Ž 𝟏. πŸ‘ [πŸ“]
A topological space (X, T) is a T 1-space if and only if for each π‘₯ ∈ 𝑋 then π‘˜π‘’π‘Ÿ{π‘₯} = {π‘₯}.
244
ISSN 1661-464X
Archives Des Sciences
Vol 65, No. 9;Sep 2012
2. Kernel set
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ 𝟐. 𝟏
Let (X,T) be a topological space. A point π‘₯ is said to be kernelled point of 𝐴(Briefly π‘₯ ∈
ker(𝐴)) iff for each F closed set contains π‘₯, then 𝐹⋂𝐴 β‰  βˆ….
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ 𝟐. 𝟐
Let (X,T) be a topological space. A point π‘₯ is said to be boundary kernelled point of
𝐴(Briefly π‘₯ ∈ krbd (𝐴)) iff for each F closed set contains π‘₯, then 𝐹⋂𝐴 β‰  βˆ… and 𝐹⋂𝐴𝑐 β‰  βˆ….
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ 𝟐. πŸ‘
Let (X,T) be a topological space. A point π‘₯ is said to be derived kernelled point of 𝐴
(Briefly π‘₯ ∈ krdr (𝐴)) iff for each F closed set contains π‘₯, then 𝐴⋂𝐹 βˆ• {π‘₯} β‰  βˆ….
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ 𝟐. πŸ’
We can define ker⁑{π‘₯} as follows ker π‘₯ = {𝑦: π‘₯ ∈ 𝐹𝑦 , 𝐹𝑦𝑐 ∈ 𝑇}.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸ“
Let (𝑋, 𝑇) be a topological space and π‘₯ β‰  𝑦 ∈ 𝑋. Then π‘₯ is a kernelled point of 𝑦 iff 𝑦 is
an adherent point of {x}.
𝑷𝒓𝒐𝒐𝒇
Let π‘₯ be a kernelled point of {𝑦}. Then for every closed set 𝐹 such that π‘₯ ∈ 𝐹implies
𝑦 ∈ 𝐹,then 𝑦 ∈ β‹‚ 𝐹: π‘₯ ∈ 𝐹 , this means 𝑦 ∈ 𝑐𝑙{π‘₯}. Thus 𝑦 is an adherent point of {x}.
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let 𝑦 be an adherent point of {π‘₯}. Then for every open set π‘ˆ such that 𝑦 ∈ π‘ˆimplies
π‘₯ ∈ π‘ˆ,then π‘₯ ∈ β‹‚ π‘ˆ: 𝑦 ∈ π‘ˆ , this means 𝑦 ∈ π‘˜π‘’π‘Ÿ{π‘₯}. Thus π‘₯ is a kernelled point of {y}.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸ”
Let (𝑋, 𝑇) be a topological space and 𝐴 βŠ† 𝑋 and let krdr (𝐴) be the set of all kernelled
derived point of 𝐴, then ker 𝐴 = 𝐴⋃krdr (𝐴).
𝑷𝒓𝒐𝒐𝒇
Let π‘₯ ∈ 𝐴⋃krdr (𝐴) and if π‘₯ ∈ krdr (𝐴) , then for every closed set 𝐹 intersects 𝐴 (in a point
different fromπ‘₯). Therefore π‘₯ ∈ ker{π‘₯}. Hence krdr (𝐴) βŠ† ker(𝐴), it follows that A⋃krdr (𝐴) βŠ†
ker(𝐴).
To demonstrate the reverse inclusion, we let π‘₯ be a point of ker(𝐴). If π‘₯ ∈ 𝐴, then π‘₯ ∈ 𝐴⋃krdr (𝐴).
Suppose that π‘₯ βˆ‰ 𝐴. Since π‘₯ ∈ ker(𝐴), then for every closed set 𝐹 containing π‘₯ implies 𝐹⋂𝐴 β‰  βˆ…, this
means 𝐴⋂𝐹 βˆ• {π‘₯} β‰  βˆ…. Then π‘₯ ∈ krdr (𝐴) , so that π‘₯ ∈ 𝐴⋃krdr (𝐴). Hence ker(𝐴) βŠ† A⋃krdr (𝐴).
Thus ker 𝐴 = 𝐴⋃krdr (𝐴).
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸ•
Let (𝑋, 𝑇) be a topological space and 𝐴 βŠ† 𝑋 and let krbd (𝐴) be the set of all kernelled
boundary point of 𝐴, then ker 𝐴 = 𝐴⋃ krbd (𝐴).
𝑷𝒓𝒐𝒐𝒇
Let π‘₯ ∈ 𝐴⋃ krbd (𝐴) and if π‘₯ ∈ krbd (𝐴) , then for every closed set 𝐹 intersects 𝐴.
Therefore π‘₯ ∈ ker{π‘₯}. Hence krbd (𝐴) βŠ† ker(𝐴), it follows that A⋃ krbd (𝐴) βŠ† ker(𝐴).
To demonstrate the reverse inclusion, we let π‘₯ be a point of ker(𝐴). If π‘₯ ∈ 𝐴, then π‘₯ ∈ 𝐴⋃ krbd (𝐴).
Suppose that π‘₯ βˆ‰ 𝐴.implies π‘₯ ∈ 𝐴𝑐 . Since π‘₯ ∈ ker(𝐴), then for every closed set 𝐹 containing π‘₯ implies
𝐹⋂𝐴 β‰  βˆ… and 𝐹⋂𝐴𝑐 β‰  βˆ…. Then π‘₯ ∈ krbd (𝐴) , so that π‘₯ ∈ 𝐴⋃ krbd (𝐴). Hence ker(𝐴) βŠ† A⋃ krbd (𝐴).
Thus ker 𝐴 = 𝐴⋃krdr (𝐴).
245
ISSN 1661-464X
Archives Des Sciences
Vol 65, No. 9;Sep 2012
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸ–
Let (𝑋, 𝑇) be a topological space and 𝐴 is a subset of X. then 𝐴 is an open set iff every
π‘₯ kernelled point of 𝐴 is an interior point of 𝐴.
𝑷𝒓𝒐𝒐𝒇
Let 𝐴 be an open set, then ker(𝐴) = 𝐴 = 𝑖𝑛𝑑 𝐴 , implies every kernelled point is an
interior point.
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let every π‘₯ kernelled point of 𝐴 is an interior point of 𝐴. Then ker(𝐴) βŠ† 𝑖𝑛𝑑(𝐴). Hence
𝑖𝑛𝑑(𝐴) βŠ† 𝐴 βŠ† ker(𝐴), implies 𝑖𝑛𝑑 𝐴 = 𝐴 = ker⁑
(𝐴). Thus 𝐴 is an open set
π‘ͺπ’π’“π’π’π’π’‚π’“π’š 𝟐. πŸ—
A subset A of X is an open set iff for each π‘₯ kernelled point then π‘₯ βˆ‰ 𝑐𝑙(𝐴𝑐 ).
𝑷𝒓𝒐𝒐𝒇
By theorem 2.8.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. 𝟏𝟎
A subset A of X is a closed set iff for each ker 𝐴𝑐 ⋂𝑐𝑙 𝐴 = βˆ….
𝑷𝒓𝒐𝒐𝒇
Let 𝐴 is a closed set. Then 𝐴𝑐 is an open set, implies 𝐴𝑐 = ker 𝐴𝑐 [By theorem 2.8].
Hence 𝐴 = 𝑐𝑙(𝐴). Thusker 𝐴𝑐 ⋂𝑐𝑙 𝐴 = βˆ….
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let ker 𝐴𝑐 ⋂𝑐𝑙 𝐴 = βˆ…, then for each π‘₯ ∈ ker 𝐴𝑐 , implies π‘₯ βˆ‰ 𝑐𝑙 𝐴 , implies π‘₯ ∈
𝑒π‘₯𝑑 𝐴 . Therefore π‘₯ ∈ 𝑖𝑛𝑑(𝐴𝑐 ). Hence by theorem 2.8, 𝐴𝑐 is an open set. Thus 𝐴 is a closed set.
π‘ͺπ’π’“π’π’π’π’‚π’“π’š 𝟐. 𝟏𝟏
Every interior point is a kernelled point.
𝑷𝒓𝒐𝒐𝒇
Clearly.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. 𝟏𝟐
A topological space(𝑋, 𝑇) is an 𝑅0 -space iff every adherent point of {π‘₯} is a kernelled point
of {π‘₯}.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be an 𝑅0 -space. Then for each π‘₯ ∈ 𝑋, ker{π‘₯} = 𝑐𝑙 π‘₯ [ By theorem 1.2]. Thus
every adherent point of {π‘₯} is a kernelled point of {π‘₯}
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let every adherent point of {π‘₯} is a kernelled point of π‘₯ and let π‘ˆ βŠ† 𝑇, π‘₯ ∈ π‘ˆ. Then
𝑐𝑙{π‘₯} βŠ† ker{π‘₯} for each π‘₯ ∈ 𝑋. Since π‘˜π‘’π‘Ÿ π‘₯ = β‹‚{π‘ˆ: π‘ˆ ∈ 𝑇, π‘₯ ∈ π‘ˆ}, implies cl{π‘₯} βŠ† π‘ˆ for each π‘ˆ
open set contains π‘₯. Thus (𝑋, 𝑇) is an 𝑅0 -space.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸπŸ‘
A topological space (𝑋, 𝑇) is 𝑇0 -space iff for each π‘₯ β‰  𝑦 ∈ 𝑋, either π‘₯ is not kernelled
point of {𝑦} or 𝑦 is not kernelled point of {π‘₯}.
𝑷𝒓𝒐𝒐𝒇
Let a topological space (𝑋, 𝑇) is 𝑇0 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋 there exist an open set π‘ˆ
such that ∈ π‘ˆ , 𝑦 βˆ‰ π‘ˆ (say), implies 𝑦 ∈ π‘ˆ 𝑐 . Hence π‘ˆ 𝑐 is a closed, then 𝑦 is not kernelled point of {π‘₯}.
Thus either π‘₯ is not kernelled point of {𝑦} or 𝑦 is not kernelled point of {π‘₯}.
246
ISSN 1661-464X
Archives Des Sciences
Vol 65, No. 9;Sep 2012
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let for each π‘₯ β‰  𝑦 ∈ 𝑋, either π‘₯ is not kernelled point of {𝑦} or 𝑦 is not kernelled point of
{π‘₯}. Then there exist a closed set F such that π‘₯ ∈ 𝐹 , 𝐹⋂ 𝑦 = βˆ… or 𝑦 ∈ 𝐹 , 𝐹⋂ π‘₯ = βˆ…, implies
π‘₯ βˆ‰ 𝐹 𝑐 , 𝑦 ∈ 𝐹 𝑐 or π‘₯ ∈ 𝐹 𝑐 , 𝑦 βˆ‰ 𝐹 𝑐 . Hence 𝐹 𝑐 is an open set. Thus (𝑋, 𝑇) is 𝑇0 -space.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸπŸ’
A topological space(𝑋, 𝑇) is an 𝑇1 -space iff π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = βˆ…, for each π‘₯ ∈ 𝑋.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be an 𝑇1 -space. Then for each π‘₯ ∈ 𝑋,
π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = ker π‘₯ βˆ’ {π‘₯}. Thus π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = βˆ…
ker{π‘₯} = π‘₯ [ By theorem 1.3]. since
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = βˆ…. By theorem 2.5, ker π‘₯ = {π‘₯}β‹ƒπ‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ , implies ker π‘₯ = {π‘₯}. Hence by
theorem 1.3, 𝑋, 𝑇 is a𝑇1 -space.
π‘»π’‰π’†π’π’“π’†π’Ž 𝟐. πŸπŸ“
A topological space (𝑋, 𝑇) is 𝑇1 -space iff for each π‘₯ β‰  𝑦 ∈ 𝑋, π‘₯ is not kernelled point of
{𝑦} and 𝑦 is not kernelled point of {π‘₯}.
𝑷𝒓𝒐𝒐𝒇
Let a topological space (𝑋, 𝑇) is 𝑇1 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋 there exist open sets
π‘ˆ , 𝑉 such that ∈ π‘ˆ , 𝑦 βˆ‰ π‘ˆ and 𝑦 ∈ 𝑉 , π‘₯ βˆ‰ 𝑉 , implies π‘₯ ∈ 𝑉 𝑐 , 𝑦 ⋂𝑉 𝑐 = βˆ… and 𝑦 ∈ π‘ˆ 𝑐 , π‘₯ β‹‚π‘ˆ 𝑐 =
βˆ…. Hence π‘ˆ 𝑐 and𝑉 𝑐 are a closed sets, then 𝑦 is not kernelled point of {π‘₯}. Thus π‘₯ is not kernelled point
of {𝑦} and 𝑦 is not kernelled point of {π‘₯}.
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let for each π‘₯ β‰  𝑦 ∈ 𝑋, π‘₯ is not kernelled point of 𝑦 and 𝑦 is not kernelled point of π‘₯ .
Then there exist a closed sets 𝐹1 , 𝐹2 such that π‘₯ ∈ 𝐹1 , 𝐹1 β‹‚ 𝑦 = βˆ… and 𝑦 ∈ 𝐹2 , 𝐹2 β‹‚ π‘₯ = βˆ…, implies
π‘₯ ∈ 𝐹2𝑐 , 𝑦 βˆ‰ 𝐹2𝑐 and 𝑦 ∈ 𝐹1𝑐 , π‘₯ βˆ‰ 𝐹1𝑐 . Hence 𝐹1𝑐 and 𝐹2𝑐 are open sets. Thus (𝑋, 𝑇) is 𝑇1 -space.
πŸ‘. π’Œπ’“ βˆ’spaces
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ πŸ‘. 𝟏
A topological space (𝑋, 𝑇) is said to be π‘˜π‘Ÿ-space iff for each subset 𝐴 of 𝑋 then ker(𝐴) is an
open set.
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ πŸ‘. 𝟐
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is said to be π‘‡π‘˜ -space iff for each subset π‘₯ ∈ 𝑋, then π‘˜π‘Ÿπ‘‘π‘Ÿ {π‘₯}
is an open set.
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸ‘
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), every 𝑇1 -space is π‘‡π‘˜ -space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a 𝑇1 -space. Then for each π‘₯ ∈ 𝑋, ker π‘₯ = {π‘₯}[By theorem 2.10].
As π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = ker π‘₯ βˆ’ {π‘₯}, implies π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ = βˆ…. Thus (𝑋, 𝑇) is a π‘‡π‘˜ -space.
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸ’
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), everyπ‘‡π‘˜ -space is a 𝑇0 -space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a π‘‡π‘˜ -space and let π‘₯ β‰  𝑦 ∈ 𝑋. Thenπ‘˜π‘Ÿπ‘‘π‘Ÿ {π‘₯} is an open set. Therefore there
exist two cases:
i) 𝑦 ∈ π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ is an open set. Since π‘₯ βˆ‰ π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ . Thus 𝑋, 𝑇 is a 𝑇0 -space
ii)𝑦 βˆ‰ π‘˜π‘Ÿπ‘‘π‘Ÿ π‘₯ , implies 𝑦 βˆ‰ ker{π‘₯}. But ker{π‘₯} is an open set. Thus 𝑋, 𝑇 is a 𝑇0 -space.
247
ISSN 1661-464X
Archives Des Sciences
Vol 65, No. 9;Sep 2012
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ πŸ‘. πŸ“
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is said to be 𝑇𝐿 -space iff for each π‘₯ β‰  𝑦 ∈ 𝑋, ker{π‘₯}β‹‚ker{𝑦}
is degenerated (empty or singleton set).
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸ”
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), every 𝑇1 -space is 𝑇𝐿 -space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a 𝑇1 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋, ker π‘₯ = {π‘₯} and ker 𝑦 = {𝑦} [By
theorem 1.3], implies ker{π‘₯}β‹‚ker{𝑦} = βˆ…. Thus (𝑋, 𝑇) is a 𝑇𝐿 -space..
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸ•
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), every 𝑇𝐿 -space. is a 𝑇0 -space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a 𝑇𝐿 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋, ker{π‘₯}β‹‚ker{𝑦} is degenerated (empty
or singleton set). Therefore there exist three cases:
i) ker π‘₯ β‹‚ ker 𝑦 = βˆ…, π‘–π‘šπ‘π‘™π‘–π‘’π‘  𝑋, 𝑇 is a 𝑇0 -space
ii)ker π‘₯ β‹‚ ker 𝑦 = π‘₯ π‘œπ‘Ÿ {𝑦}, implies 𝑦 βˆ‰ ker{π‘₯} or π‘₯ βˆ‰ ker 𝑦 , implies
iii) ker π‘₯ β‹‚ ker 𝑦 = 𝑧 , 𝑧 β‰  π‘₯ β‰  𝑦 , 𝑧 ∈ 𝑋, implies 𝑦 βˆ‰ ker{π‘₯} and
implies 𝑋, 𝑇 is a 𝑇0 -space.
𝑋, 𝑇 is a 𝑇0 -space.
π‘₯ βˆ‰ ker⁑
{𝑦},
π‘«π’†π’‡π’Šπ’π’Šπ’•π’Šπ’π’ πŸ‘. πŸ–
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is said to be
ker⁑{π‘₯}β‹‚ker⁑
{𝑦} is empty or {x} or {y}.
𝑇𝑁 -space iff for each π‘₯ β‰  𝑦 ∈ 𝑋,
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸ—
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), every 𝑇1 -space is 𝑇𝑁 βˆ’ space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a 𝑇𝑁 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋, ker π‘₯ = {π‘₯} and ker 𝑦 = {𝑦} [By
theorem 1.3], implies ker⁑
{π‘₯β‹‚ker{𝑦} = βˆ…. Thus (𝑋, 𝑇) is a 𝑇𝑁 -space.
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. 𝟏𝟎
In topological π‘˜π‘Ÿ-space (𝑋, 𝑇), every 𝑇𝑁 -space. is a 𝑇0 -space.
𝑷𝒓𝒐𝒐𝒇
Let (𝑋, 𝑇) be a 𝑇𝑁 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋, ker{π‘₯}β‹‚ker{𝑦} is degenerated (empty
or singleton set). Therefore there exist two cases:
i) ker π‘₯ β‹‚ ker 𝑦 = βˆ…, π‘–π‘šπ‘π‘™π‘–π‘’π‘  𝑋, 𝑇 is a 𝑇0 -space
ii)ker π‘₯ β‹‚ ker 𝑦 = π‘₯ π‘œπ‘Ÿ {𝑦}, implies 𝑦 βˆ‰ ker{π‘₯} or π‘₯ βˆ‰ ker 𝑦 , implies
𝑋, 𝑇 is a 𝑇0 -space.
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. 𝟏𝟏
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is 𝑇2 -space iff for each π‘₯ β‰  𝑦 ∈ 𝑋, then ker π‘₯ β‹‚ ker 𝑦 = βˆ…
𝑷𝒓𝒐𝒐𝒇
Let a topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is 𝑇2 -space. Then for each π‘₯ β‰  𝑦 ∈ 𝑋 there exist disjoint
open sets π‘ˆ , 𝑉 such that π‘₯ ∈ π‘ˆ, and 𝑦 ∈ 𝑉. Hence ker{π‘₯} βŠ† π‘ˆ and ker{𝑦} βŠ† 𝑉.
Thus ker π‘₯ β‹‚ ker 𝑦 = βˆ…
π‘ͺπ’π’π’—π’†π’“π’”π’†π’π’š
Let for each π‘₯ β‰  𝑦 ∈ 𝑋, ker π‘₯ β‹‚ ker 𝑦 = βˆ…. Since (𝑋, 𝑇) be a topological π‘˜π‘Ÿ-space, this
means kernel is an open set. Thus (𝑋, 𝑇) is 𝑇2 -space.
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. 𝟏𝟐
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is a regular space iff for each 𝐹 closed set and π‘₯ βˆ‰ 𝐹, then
ker(𝐹) β‹‚ ker π‘₯ = βˆ…
248
ISSN 1661-464X
Archives Des Sciences
Vol 65, No. 9;Sep 2012
𝑷𝒓𝒐𝒐𝒇
By the same way of proof of theorem 3.11
π‘»π’‰π’†π’π’“π’†π’Ž πŸ‘. πŸπŸ‘
A topological π‘˜π‘Ÿ-space (𝑋, 𝑇) is a normal space iff for each disjoint closed sets 𝐺 , 𝐻, then
ker(𝐺) β‹‚ ker(𝐻) = βˆ…
𝑷𝒓𝒐𝒐𝒇
By the same way of proof of theorem 3.11
REFERENCES
[1] A.S.Davis. Indexed system of Neighborhood for general Topology Amer.
Math. Soc. (9) 68(1961), 886-893.
[2] Bishwambhar Roy and M.N.Mukherjee. A unified theory for R0, R1and certain other separation
properties
and their variant forms, Bol. Soc. Paran. Mat. (3s) v.28.2(2010):15-24
[3] M.L.Colasante and D.V. Zypen. Minimal regular and minimal presober topologies, Revista Notas
de
Matematica, Vol.5(1),No.275.2009,P.73-84
[4] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR
38 (1943), 110-113.
[5] L. A. Al-Swidi and B. Mohammed, Separation axiom via kernel set, Archive des sciences, Vol 65,
No.
7(2012), pp 41-48
249
ISSN 1661-464X