Download photosynthesis calvin cycle - The Bronx High School of Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Photosynthetic reaction centre wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Transcript
Photosynthesis:
The Calvin Cycle
Life from Air
AP Biology
2007-2008
Remember what it means to be a plant…
 Need to produce all organic molecules
necessary for growth

carbohydrates, lipids, proteins, nucleic acids
 Need to store chemical energy (ATP)
produced from light reactions
in a more stable form
 that can be moved around plant
 saved for a rainy day

carbon + water + energy  glucose + oxygen
dioxide
light  C H O + 6O
AP Biology6CO2 + 6H2O +
6 12 6
2
energy
Light reactions
 Convert solar energy to
chemical energy
 ATP  energy

ATP
NADPH  reducing power
 What can we do now?
  build stuff !!
AP Biology
photosynthesis
How is that helpful?
 Want to make C6H12O6
synthesis
 How? From what?
What raw materials are available?

CO2
carbon fixation
NADPH
reduces CO2
NADP
C6H12O6
AP Biology
NADP
From CO2  C6H12O6
 CO2 has very little chemical energy

fully oxidized
 C6H12O6 contains lots of chemical energy

highly reduced
 Synthesis = endergonic process

put in a lot of energy
 Reduction of CO2  C6H12O6 proceeds in
many small uphill steps
each catalyzed by a specific enzyme
 using energy stored in ATP & NADPH

AP Biology
From Light reactions to Calvin cycle
 Calvin cycle

chloroplast stroma
 Need products of light reactions to
drive synthesis reactions
stroma
ATP
 NADPH

ATP
thylakoid
AP Biology
http://www.science.smith.edu/departments/Biology/Bio2
31/calvin.html
C
Calvin cycle
C
C C C C C
3. Regeneration
of RuBP
starch,
sucrose,
cellulose
& more
H H H
|
|
|
C–C–C
AP Biology
C C C C C
RuBP
5C
3 ATP
C
C
C
C
C
C
C
C
C
C
C
C
1. Carbon fixation
C C C C C C
RuBisCo
ribulose
bisphosphate
carboxylase
3 ADP
C
C
C
C
C
C
CO2
C C C C C
ribulose bisphosphate
used
to make
glucose
Reduction
C=C=C
1C
C
C C C C C C
6C
C C C C C C
5C
glyceraldehyde-3-P
G3P
C C C
PGA
phosphoglycerate
3C
6 NADP
C
C
C
C
C
C
6 ATP
2. Reduction
6 NADPH
3C
C
C
C
C
C
C
3C
6 ADP
C
C
C
C
C
C
H
|
H
|
H
|
http://www.science.smith.edu/departments/Biology/Bio2
31/calvin.html
C
Calvin cycle
C
C C C C C
3. Regeneration
of RuBP
starch,
sucrose,
cellulose
& more
H H H
|
|
|
C–C–C
AP Biology
C C C C C
RuBP
5C
3 ATP
C
C
C
C
C
C
C
C
C
C
C
C
1. Carbon fixation
C C C C C C
RuBisCo
ribulose
bisphosphate
carboxylase
3 ADP
C
C
C
C
C
C
CO2
C C C C C
ribulose bisphosphate
used
to make
glucose
Reduction
C=C=C
1C
C
C C C C C C
6C
C C C C C C
5C
glyceraldehyde-3-P
G3P
C C C
PGA
phosphoglycerate
3C
6 NADP
C
C
C
C
C
C
6 ATP
2. Reduction
6 NADPH
3C
C
C
C
C
C
C
3C
6 ADP
C
C
C
C
C
C
H
|
H
|
H
|
Remember
G3P?
glycolysis
glucose
C-C-C-C-C-C
2 ATP
2 ADP
fructose-1,6bP
P-C-C-C-C-C-C-P
DHAP
P-C-C-C
G3P
glyceraldehyde
3-phosphate
C-C-C-P
2 NAD+
2
4 ADP
AP Biology
Photosynthesis
pyruvate
C-C-C
4 ATP
To G3P and Beyond!
 Glyceraldehyde-3-P
used
to make
glucose
glyceraldehyde-3-P
G3P
C C C
end product of Calvin cycle
 energy rich 3 carbon sugar
 “C3 photosynthesis”
why stop here?

 G3P is an important intermediate
 G3P   glucose   carbohydrates
AP Biology
  lipids   phospholipids, fats, waxes
  amino acids   proteins
  nucleic acids   DNA, RNA
RuBisCo
 Enzyme that fixes carbon from air
ribulose bisphosphate carboxylase
 the most important enzyme in the world!

 it makes life out of air!

definitely the most abundant enzyme
I’m green
with envy!
AP Biology
It’s not easy
being green!
Accounting
used
C C C C C C to make
glucose
6 NADPH
glyceraldehyde-3-P
G3P
C CC
6 NADP
 The accounting is complicated

1 turn (3CO2) of Calvin cycle = 1 G3P

3 CO2  1 G3P (3C)

6 ADP
2 turns (2x 3CO2) of Calvin cycle = 1 C6H12O6
(6C)

6 CO2  1 C6H12O6 (6C)

18 ATP + 12 NADPH  1 C6H12O6

6 ATP
any ATP left over from light reactions will be used elsewhere by the cell
Note that more ATP than NADPH is required.
AP Biology
How does the plant deal with that? Cyclic photophosphorylation…
Noncyclic Photophosphorylation
 Light reactions elevate
electrons in
2 steps (PS II & PS I)

PS II generates
energy as ATP

PS I generates
reducing power as NADPH
ATP
AP Biology
Cyclic photophosphorylation
 If PS I can’t pass electron
to NADP…it cycles back
to PS II & makes more
ATP, but no NADPH
coordinates light
reactions to Calvin cycle
 Calvin cycle uses more
ATP than NADPH


18 ATP +
NADPH
AP12
Biology
 1 C6H12O6
ATP
Photophosphorylation
cyclic
Photophosphorylation (red)
NADP
NONcyclic
Photophosphorylation
(blue)
ATP
AP Biology
Photosynthesis summary
 Light reactions
produced ATP
 produced NADPH
 consumed H2O
 produced O2 as byproduct

 Calvin cycle
consumed CO2
 produced G3P (sugar)
 regenerated ADP
 regenerated NADP

AP Biology
ADP
NADP
Light Reactions
light  ATP + NADPH + O
2
energy
H2O +
H2O
sunlight
Energy Building
Reactions
NADPH
ATP
AP Biology
O2
 produces ATP
 produces NADPH
 releases O2 as a
waste product
Calvin Cycle
CO2 + ATP + NADPH  C6H12O6 + ADP + NADP
CO2
ADP
NADP
Sugar
Building
Reactions
NADPH
ATP
AP Biology
sugars
 builds sugars
 uses ATP &
NADPH
 recycles ADP
& NADP
 back to make
more ATP &
NADPH
Putting it all together
light
CO2 + H2O + energy  C6H12O6 + O2
H2O
CO2
sunlight
ADP
Energy NADP
Building
Reactions
Sugar
Building
Reactions
NADPH
ATP
AP Biology
O2
sugars
Plants make both:
 energy
 ATP & NADPH
 sugars
even though
this equation
is a bit of a lie…
it makes a
better story
Energy cycle
sun
Photosynthesis
light
6CO2 +6H2O + energy  C6H12O6 +6O2
plants
CO2
glucose
H2O
animals, plants
ATP
C6H12O6 + O2  energy + CO2 + H2O
Cellular Respiration
AP Biology
The Great Circle
of Life,Mufasa!
ATP
http://www.youtube.com/watch?v=HwSKkKrUzUk
O2
Summary of photosynthesis
6CO2 + 6H2O + light  C6H12O6 + 6O2
energy










Where did the CO2 come from?
Where did the CO2 go?
Where did the H2O come from?
Where did the H2O go?
Where did the energy come from?
What’s the energy used for?
What will the C6H12O6 be used for?
Where did the O2 come from?
Where will the O2 go?
What else is involved…not listed in this equation?
AP Biology
Supporting a biosphere
 On global scale,
photosynthesis is the
most important process
for the continuation of life on Earth

each year photosynthesis…
 captures 121 billion tons of CO2
 synthesizes 160 billion tons of carbohydrate

AP Biology
heterotrophs are dependent on plants as
food source for fuel & raw materials
If plants can do it…
You can learn it!
Ask Questions!!
AP Biology
2013-2014