Download Functions of Random Variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
Transcript
Functions of Random Variables
Often we have to consider random variables which are functions of other random
variables. Let X be a random variable and g (.) is a function. Then Y  g ( X ) is a
random variable. We are interested to find the pdf of Y . For example, suppose
X represents the random voltage input to a full-wave rectifier. Then the rectifier output
Y is given by Y  X . We have to find the probability description of the random variable
Y . We consider the following cases:
(a) X is a discrete random variable with probability mass function p X ( x)
The probability mass function of Y is given by
pY ( y )  P(Y  y)
 P( x | g ( x)  y)


P( X  x)

p X ( x)
x| g ( x )  y

x| g ( x )  y
(b) X is a continuous random variable with probability density function
y  g ( x) is one-to-one and monotonically increasing
The probability distribution function of Y is given by
f X ( x) and
FY ( y )  P Y  y
 P  g ( X )  y
 P  X  g 1 ( y )
 P( X  x)  x  g 1 ( y )
 FX ( x) x  g 1 ( y )
fY ( y ) 
dFY ( y )
dy

dFX ( x) 
dy  x  g 1 ( y )

dFX ( x) dx 
dx dy  x  g 1 ( y )
dFX ( x) 

 dx 
dy

dx  x  g 1 ( y )

fY ( y ) 
f X ( x) 
g ( x)  x  g 1 ( y )
f X ( x) f X ( x) 

dy
g ( x)  x  g 1 ( y )
dx
This is illustrated in Fig.
Example 1: Probability density function of a linear function of a random variable
Suppose Y  aX  b, a  0.
y b
dy
Then x 
and
a
a
dx
y b
fX (
)
f X ( x)
a
 fY ( y ) 

dy
a
dx
Example 2: Probability density function of the distribution function of a random
variable
Suppose the distribution function FX ( x) of a continuous random variable X is
monotonically increasing and one-to-one and define the random variable
Y  FX ( X ). Then, fY ( y)  1 0  y  1.
y  FX ( x)
Clearly 0  y  1
dy dFX ( x)

 f X ( x)
dx
dx
f ( x) f X ( x)
 fY ( y )  X

1
dy
f X ( x)
dx
 fY ( y )  1 0  y  1.
Remark
(1) The distribution given by fY ( y)  1 0  y  1 is called a uniform distribution over the
interval [0,1].
(2) The above result is particularly important in simulating a random variable with a
particular distribution function. We assumed FX ( x) to be one-to-one function for
invariability. However, the result is more general- the random variable defined by the
distribution function of any random variable is uniformly distributed over [0,1]. For
example, if X is a discrete RV,
FY ( y ) =P(Y  y )
 P( FX ( x)  y )
 P( X  FX1 ( y ))
 FX ( FX1 ( y ))
 y ( Assigning FX1 ( y ) to the left-most point of the interval for which FX ( x)  y ).
dF ( y )
 fY ( y )  Y
 1 0  y  1.
dy
Y  FX ( X )
y
x  FX1 ( y )
X
(c) X is a continuous random variable with probability density function
y  g ( x) has multiple solutions for x
Suppose for y  Y , y  g ( x) has solutions xi , i  1, 2,3,............., n . Then
f X ( x) and
n
fY ( y )  
i 1
f X ( x)
dy
dx x  xi
Proof:
Consider the plot of Y  g ( X ) . Suppose at a point y  g ( x) , we have three distinct roots
as shown. Consider the event  y  Y  y  dy . This event will be equivalent to union
events
x1  X  x1  dx1 ,x2  dx2  X  x2 
and
x3  X  x3  dx3
 P  y  Y  y  dy  P x1  X  x1  dx1  P x2  dx2  X  x2   P x3  X  x3  dx3
 fY ( y)dy  f X ( x1 )dx1  f X ( x2 )(dx2 )  f X ( x3 )dx3
Where the negative sign in  dx2 is used to account for positive probability.
Therefore, dividing by dy and taking the limit, we get
 dx 
 dx 
 dx 
fY ( y )  f X ( x1 )  1   f X ( x2 )   2   f X ( x3 )  3 
 dy 
 dy 
 dy 
 f X ( x1 )
3

i 1
dx
dx1
dx
 f X ( x2 ) 2  f X ( x3 ) 3
dy
dy
dy
f X ( xi )
dy
dx x  xi
In the above, we assumed y  g ( x) to have three roots. In general, if y  g ( x) has n
roots, then
n
fY ( y )  
i 1
f X ( xi )
dy
dx x  xi
Example 3: Probability density function of a linear function of a random variable
Suppose Y  aX  b, a  0.
y b
dy
Then x 
and
a
a
dx
y b
fX (
)
f X ( x)
a
 fY ( y ) 

dy
a
dx
Example 4: Probability density function of the output of a full-wave rectifier
Suppose Y  X ,
 a  X  a,
a0
Y
y
y
y
y  x has two solutions x1  y and x2   y and
 fY ( y ) 
f X ( x ) x  y

X
dy
 1 at each solution point.
dx
f X ( x)x  y
1
1
 f X ( y )  f X ( y )
Example 5: Probability density function of the output of a square-law device
Y  cX 2 , c  0
 y  cx 2
And
 x  
y
c
y0
dy
dy
 2cx so that
 2c y / c  2 cy
dx
dx
 fY ( y ) 
fX


y / c  fX
2 cy
= 0 otherwise

y /c

y0