Download Final report

Document related concepts

Scientific opinion on climate change wikipedia , lookup

Climate change and agriculture wikipedia , lookup

Climatic Research Unit documents wikipedia , lookup

Public opinion on global warming wikipedia , lookup

Climate change in the Arctic wikipedia , lookup

Climate change and poverty wikipedia , lookup

Climate sensitivity wikipedia , lookup

Effects of global warming on humans wikipedia , lookup

Global warming wikipedia , lookup

General circulation model wikipedia , lookup

Early 2014 North American cold wave wikipedia , lookup

Surveys of scientists' views on climate change wikipedia , lookup

Attribution of recent climate change wikipedia , lookup

Future sea level wikipedia , lookup

Global warming hiatus wikipedia , lookup

Glacier mass balance wikipedia , lookup

Global Energy and Water Cycle Experiment wikipedia , lookup

Climate change, industry and society wikipedia , lookup

Effects of global warming on human health wikipedia , lookup

IPCC Fourth Assessment Report wikipedia , lookup

Pleistocene Park wikipedia , lookup

North Report wikipedia , lookup

Climate change feedback wikipedia , lookup

Instrumental temperature record wikipedia , lookup

Transcript
WP5–Action5.3–Finalreport
Thermalandgeomorphicpermafrost
responsetopresentandfutureclimate
changeintheEuropeanAlps
Editors:
AndreasKellererͲPirklbauer,GerhardKarlLieb,
PhilippeSchoeneich,PhilipDelineandPaoloPogliotti
Graz,2011
WP5–Action5.3–Finalreport
Thermalandgeomorphicpermafrost
responsetopresentandfutureclimate
changeintheEuropeanAlps
Citationreference
KellererͲPirklbauer A., Lieb G.K., Schoeneich P., Deline P., Pogliotti P. eds (2011). Thermal and
geomorphic permafrost response to present and future climate change in the European Alps.
PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,177pp.
Downladableon:www.permanetͲalpinespace.eu
Editors
Andreas KellererͲPirklbauer and Gerhard Karl Lieb, Institute of Geography and Regional Science,
UniversityofGraz,Austria(IGRS)
PhilippeSchoeneich,InstitutdeGéographieAlpine,UniversitédeGrenoble,France(IGAͲPACTE)
PhilipDeline,EDYTEM,UniversitédeSavoie,France(EDYTEM)
Paolo Pogliotti, Regional Agency for the Environmental Protection of the Aosta Valley, Italy (ARPA
VdA)
Projectreference
The PermaNET – Permafrost long term monitoring network (2008Ͳ2011) project is part of the
EuropeanTerritorialCooperationandcoͲfundedbytheEuropeanRegionalDevelopmentFund(ERDF)
inthescopeoftheAlpineSpaceProgrammewww.alpineͲspace.eu
PermaNET–Permafrostresponsetoclimatechange
Authors
Baroni,Carlo
Bodin,Xavier
Cagnati,Anselmo
Carollo,Federico
Coviello,Velio
Cremonese,Edoardo
Crepaz,Andrea
Dall’Amico,Matteo
Defendi,Valentina
Deline,Philip
Drenkelfluss,Anja
Galuppo,Anna
Gruber,Stephan
KellererͲPirklbauer,
Andreas
Kemna,Andreas
Klee,Alexander
Krainer,Karl
Krautblatter,Michael
Kroisleinter,Christine
Krysiecki,JeanͲMichel
LeRoux,Olivier
UniversityofPisa(Italy)
UniversityJosephFourier,Grenoble(France)
RegionalAgencyfortheEnvironmentalProtectionofVeneto(Italy)
E.P.C.EuropeanProjectConsultingS.r.l.(Italy)
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy)
RegionalAgencyfortheEnvironmentalProtectionofVeneto(Italy)
MountainͲeeringsrl(Italy)
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
UniversityofBonn(Germany)
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
UniversityofZurich(Switzerland)
UniversityofGraz(Austria)
UniversityofBonn(Germany)
CentralInstituteforMeteorologyandGeodynamics(Austria)
UniversityofInnsbruck(Austria)
UniversityofBonn(Germany)
CentralInstituteforMeteorologyandGeodynamics(Austria)
UniversityJosephFourier,Grenoble(France)
Associationpourledéveloppementdelarecherchesurlesglissementsdeterrain
(France)
Lieb,GerhardKarl
UniversityofGraz(Austria)
Lorier,Lionel
Associationpourledéveloppementdelarecherchesurlesglissementsdeterrain
(France)
Magnabosco,Laura
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
Magnin,Florence
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
Mair,Volkmar
AutomousProvinceofBolzano(Italy)
Malet,Emmanuel
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
Marinoni,Francesco
Freelancer(Italy)
MorradiCella,Umberto RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy)
Noetzli,Jeanette
UniversityofZurich(Switzerland)
Pogliotti,Paolo
RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy)
Ravanel,Ludovic
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
Reisenhofer,Stefan
CentralInstituteforMeteorologyandGeodynamics(Austria)
Riedl,Claudia
CentralInstituteforMeteorologyandGeodynamics(Austria)
Rigon,Riccardo
UniversityofTrento(Italy)
Schoeneich,Philippe
UniversityJosephFourier,Grenoble(France)
Schöner,Wolfgang
CentralInstituteforMeteorologyandGeodynamics(Austria)
Seppi,Roberto
UniversityofPavia(Italy)
Vallon,Michel
UniversityJosephFourier,Grenoble(France)
Zampedri,Giorgio
GeologicalSurvey,AutonomousProvinceofTrento(Italy)
Zischg,Andreas
AbenisAlpinexpertGmbH/srl(Italy)
Zumiani,Matteo
Geologist(Italy)
ADRAͲAssociationpourladiffusiondelarecherchealpine
14bisav.MarieͲReynoard,
FͲ38100Grenoble
ISBN978Ͳ2Ͳ903095Ͳ58Ͳ1
Contentsandlistforchapterpublications
1.PermafrostResponsetoClimateChange
SchoeneichP.,LiebG.K.,KellererͲPirklbauerA.,DelineP.,PogliottiP.(2011).Chapter1:Permafrost
Response to Climate Change. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.4Ͳ15.
2.ClimateChangeintheEuropeanAlps
KroisleitnerCh.,ReisenhoferS.,SchönerW.(2011).Chapter2:ClimateChangeintheEuropeanAlps.
In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost response to present and
future climate change in the European Alps. PermaNET project, final report of Action 5.3. OnͲline
publicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.16Ͳ27.
3.CasestudiesintheEuropeanAlps
3.1Overviewoncasestudies
KellererͲPirklbauerA,LiebG.K.(2011).Chapter3.1:CasestudiesintheEuropeanAlps–Overviewon
case studies. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost response to
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.28Ͳ34.
3.2Hochreichart,EasternAustrianAlps
KellererͲPirklbauerA(2011).Chapter3.2:CasestudiesintheEuropeanAlps–Hochreichart,Eastern
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.35Ͳ44.
3.3DösenValley,CentralAustrianAlps
KellererͲPirklbauerA(2011).Chapter3.3:CasestudiesintheEuropeanAlps–DösenValley,Central
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.45Ͳ58.
3.4HoherSonnblick,CentralAustrianAlps
Klee A, Riedl C. (2011). Chapter 3.4: Case studies in the European Alps – Hoher Sonnblick, Central
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.59Ͳ65.
1
PermaNET–Permafrostresponsetoclimatechange
3.5RockGlacierHochebenkar,WesternAustrianAlps
Krainer K. (2011). Chapter 3.5: Case studies in the European Alps – Rock Glacier Hochebenkar,
Western Austrian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost
responsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreport
ofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.66Ͳ76.
3.6RockGlacierLaurichard,NorthernFrenchAlps
SchoeneichP.,BodinX.,KrysieckiJ.ͲM.(2011).Chapter3.6:CasestudiesintheEuropeanAlps–Rock
Glacier Laurichard, Northern French Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and
geomorphic permafrost response to present and future climate change in the European Alps.
PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.77Ͳ86.
3.7RockGlacierBellecombes,NorthernFrenchAlps
SchoeneichP.,KrysieckiJ.ͲM.,LeRouxO.,LorierL.,VallonM.(2011).Chapter3.7:Casestudiesinthe
European Alps – Rock Glacier Bellecombes, Northern French Alps. In KellererͲPirklbauer A. et al.
(eds): Thermal and geomorphic permafrost response to present and future climate change in the
EuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ
58Ͳ1,p.87Ͳ96.
3.8AiguilleduMidi,MontBlancmassif,FrenchAlps
DelineP.,CremoneseE.,DrenkelflussA.,GruberS.,KemnaA.,KrautblatterM.,MagninF.,MaletE.,
MorradiCellaU.,NoetzliJ.,PogliottiP.,RavanelL.(2011).Chapter3.8:CasestudiesintheEuropean
Alps–AiguilleduMidi,MontBlancmassif,FrenchAlps.InKellererͲPirklbauerA.etal.(eds):Thermal
and geomorphic permafrost response to present and future climate change in the European Alps.
PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.97Ͳ108.
3.9RockfallsintheMontBlancmassif,
DelineP.,RavanelL.(2011).Chapter3.9:CasestudiesintheEuropeanAlps–RockfallsintheMont
Blanc massif, FrenchͲItalian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.109Ͳ118.
3.10CimeBianchePass,ItalianAlps
PogliottiP,CremoneseE.,MorradiCellaU.(2011).Chapter3.10:CasestudiesintheEuropeanAlps–
Cime Bianche Pass, Italian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.119Ͳ128.
3.11Maroccarorockglacier,ValdiGenova,ItalianAlps
SeppiR.,BaroniC.CartonA.,Dall’AmicoM.,RigonR.,ZampedriG.,ZumianiM.(2011).Chapter3.11:
CasestudiesintheEuropeanAlps–Maroccarorockglacier,ValdiGenova,ItalianAlps.InKellererͲ
PirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponsetopresentandfutureclimate
changeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN
978Ͳ2Ͳ903095Ͳ58Ͳ1,p.129Ͳ139.
2
3.12Amolarockglacier,Vald’Amola,ItalianAlps
SeppiR.,BaroniC.CartonA.,Dall’AmicoM.,RigonR.,ZampedriG.,ZumianiM.(2011).Chapter3.12:
Case studies in the European Alps – Amola rock glacier, Val d’Amola, Italian Alps. In KellererͲ
PirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponsetopresentandfutureclimate
changeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.ISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,
p.140Ͳ150.
3.13PizBoèrockglacier,Dolomites,EasternItalianAlps
A. Crepaz A., Cagnati A., Galuppo A., Carollo F., Marinoni F., Magnabosco L., Defendi V. (2011).
Chapter 3.13: Case studies in the European Alps – Piz Boè rock glacier, Dolomites, Eastern Italian
Alps.InKellererͲPirklbauerA.etal.(eds):Thermal andgeomorphicpermafrostresponsetopresent
andfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲline
publicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.151Ͳ158.
3.14UpperSuldenValley,OrtlerMountains,ItalianAlps
Zischg A., Mair V. (2011). Chapter 3.14: Case studies in the European Alps – Upper Sulden Valley,
Ortler Mountains, Italian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.159Ͳ169.
4.SynthesisofCaseStudies
LiebG.K.,KellererͲPirklbauerA.(2011).Chapter4:Synthesisofcasestudies.InKellererͲPirklbauerA.
et al. (eds): Thermal and geomorphic permafrost response to present and future climate change in
the European Alps. PermaNET project, final report of Action 5.3. OnͲline publication ISBN 978Ͳ2Ͳ
903095Ͳ58Ͳ1,p.170Ͳ177.
3
PermaNET–Permafrostresponsetoclimatechange
1.
PermafrostResponsetoClimateChange
Citationreference
SchoeneichP.,LiebG.K.,KellererͲPirklbauerA.,DelineP.,PogliottiP.(2011).Chapter1:Permafrost
Response to Climate Change. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.4Ͳ15.
Authors
Coordination:PhilippeSchoeneich
Involvedprojectpartnersandcontributors:
Ͳ Institut de Géographie Alpine, Université de Grenoble, France (IGAͲPACTE) – Philippe
Schoeneich
Ͳ Institute of Geography and Regional Science, University of Graz, Austria (IGRS) – Andreas
KellererͲPirklbauer,GerhardKarlLieb
Ͳ EDYTEM,UniversitédeSavoie,France(EDYTEM)–PhilipDeline
Ͳ Regional Agency for the Environmental Protection of the Aosta Valley, Italy (ARPA VdA) –
PaoloPogliotti
Content
Summary
1. Introduction
2. Thermalpermafrostresponse
3. Geomorphicpermafrostresponse
4. Finalremarks
References
4
PermaNETͲPermafrostResponsetoClimateChange
Summary
Permafrost is defined as subsurface material that remains below 0°C also during the summer.
Thuspermafrostisathermalphenomenonwhosecharacteristicslargelydependontheclimatic
conditions. This means that a changing climate also affects the thermal regime of the
underground. The interactions between the atmosphere and the surface as well as the
subsurfacetemperaturesyetarehighlycomplexdependingonseveralenvironmentalfactorslike
e.g. the substrate itself (coarseͲgrained blocky material, fineͲgrained material, bedrock), the
character of the relief (e.g. depression vs. ridge), the exposure relative to the sun or the snow
cover characteristics (onset and disappearance date, length of snow cover period, thickness,
dynamics).
In this chapter the occurrence types of frost and their altitudinal distribution is described first.
Thenpermafrostreactionstoclimatechangearediscussedundertwoaspects–thethermaland
thegeomorphiconeaccordingtothealreadyexistingknowledge.
Mainthermalreactionsare:(a)increasinggroundtemperatureandhencepermafrostwarming,
(b) thawing of permafrost leading to reduction in its spatial extent, active layer thickening and
changing groundͲwater circulation, (c) changes in the number of freezeͲthaw cycles and
magnitudeoffreezingandthawingperiods.
Maingeomorphicreactionsare:(a)changesintherateofrockglacierdisplacement,(b)changes
in the displacement mode of rock glaciers, (c) changes in solifluction rates, (d) changes in
cryogenicweathering,(e)changesinthevolumeandextentofunstablematerials,(f)changesin
frequency and magnitude of mass movement events, and (g) surface instabilities caused by
thermokarstprocesses/meltingofpermafrostice.Someofthesegeomorphicreactionsarealso
truefornonͲpermafrostperiglacialareas,meaningalpineandsubalpineenvironmentsatlower
elevations.
Summingupitisshownherequitewellthatongoingclimatechangehasanumberofcomplex
influencesonthegroundtemperaturebutalsogroundstabilityonthemountainpermafrostof
theEuropeanAlps.
5
PermaNET–Permafrostresponsetoclimatechange
1. Introduction
Permafrost is an effect of frost and negative temperatures and results from a negative energy
balance at the ground surface. The energy balance mainly depends on the direct incoming solar
radiationandonthesensibleheatflux.ThusitisencounteredintheAlpsathighelevations,where
airtemperature(controllingthesensibleheatflux)islow.Permafrostismoreextensiveandoccursat
lower altitudes on north facing than on south facing slopes, because of a reduced incoming solar
radiationduetoslopeangleandshadowingeffects.
1.1Theoccurrencetypesoffrost
Permafrostisnottheonlyeffectoffrost.FrostoccursatallaltitudinallevelsintheAlps,withvarious
intensityandduration.Oneusuallydistinguishesthefollowingoccurrencesoffrost:
x
DiurnalfreezeͲthawcyclesconsistofthefreezingandsubsequentthawingofmaterialduring
anightͲdaycycleorseveralconsecutivedaysorweeks.Theyaredrivenbyairtemperature
cycles. Climatologists define frost days (FD) as days where the minimum temperature is
negative, and ice days (ID) as days where the maximum temperature remains below zero,
henceinducingfreezeconditionsoveratatleastoneday.FreezeͲthawdays(FTD)aredefined
asdayswithnegativeminimumandpositivemaximumtemperature.Insoilandrock,freezeͲ
thaw cycles have to be distinguished according to their duration, intensity and penetration
depth. Diurnal frost is usually of moderate intensity and has a limited penetration depth,
whereas periods of consecutive very cold ice days have the highest penetration depth and
intensity. FreezeͲthaw cycles induce frost shattering of rocks and are the main controlling
factor of debris production. To be efficient, the frost must have a minimal intensity and
duration. Diurnal frost cycles have only a limited impact. Cycles of several days reaching
temperaturesofͲ5°Candlessareconsideredtobemostefficient.
x
SeasonalfrostdefinesmaterialthatexperiencesoneannualfreezeͲthawcycle,ofaduration
of at least several weeks up to several months, but with a total thawing during the warm
season.Frostdurationanddepthdependmoreonthemeantemperaturethanonindividual
cycles.Seasonalfrostinducesgeomorphicprocesseslikesolifluctionandsimilarshallowsoil
creepingphenomena.
x
Permafrostisdefinedformallyasasubsurfacematerial(rock,debrisorsoil)thatremainsata
temperature below zero during the whole year. It consists of two parts: the surface layer,
called active layer that thaws seasonally and refreezes during the cold season, and the
permafrostsensustrictuthatremainsconstantlybelowzero.Fromtheclimaticpointofview,
permafrostoccurswheretheannualheatbalanceisnegative.Duetosomecharacteristicsof
thesurfacelayers(knownasthethermaloffset),thisdoesnotoccuratthe0°Cisotherm,but
at a mean annual air temperature of Ͳ1 to Ͳ2°C. Permafrost is usually subdivided into
continuous,discontinuous,sporadicandisolatedpermafrost,accordingtothepercentageof
theareacoveredbypermafrost.Theusualthresholdsarethefollowingonesbutpartlyvary
betweenauthors(cf.French2007):
o
o
o
o
isolated:lessthan10%ofthesurfaceaffectedbypermafrost
sporadic:between10and50%ofthesurfaceaffectedbypermafrost
discontinuous:between50and90%ofthesurfaceaffectedbypermafrost
continuous:morethan90%ofthesurfaceaffectedbypermafrost.
Furthermore,someauthorsdistinguish:
o coldpermafrost,withameangroundtemperaturebelowͲ1°C
o temperateorwarmpermafrost,withagroundtemperaturecloseto0°C(typicallyͲ
0.1toͲ0.2°C).
6
PermaNETͲPermafrostResponsetoClimateChange
Thispointraisesthequestionofthemeltingpointtemperatureinpermafrost,especiallyin
aniceͲdebrismixture.
1.2Altitudinaldistribution
The various occurrences of frost show an altitudinal distribution, controlled by the altitudinal
gradientsofthecontrollingclimatefactors.
x
DiurnalfreezeͲthawcyclesoccurinwinteratlowaltitudes,inspringandautumnat middle
altitudes and in summer at high altitudes. Their maximal frequency is observed at middle
altitudes.IntensityanddurationofthefreezeͲthawcyclesincreasewithaltitude.
x
Seasonal frost occurs at middle altitudes and its duration and penetration depth increase
withaltitude.Itpassestopermafrostathighaltitudes.
x
Permafrost occurs sporadically at middle altitudes. At high altitudes discontinuous
permafrostoccurs,withaprogressivetransitiontomorecontinuouscoveragewithincreasing
altitude.
Thisaltitudinaldistributionoffrostoccurrencesisassociatedwithanaltitudinaldistributionoffrost
relatedprocessesandlandforms:
x
FrostshatteringandtalusproductionarerelatedtofreezeͲthawcycles.
x
Shallowsolifluctionprocessesarerelatedtoseasonalfrost.
x
Deepcreepprocesses(rockglaciers)arerelatedtopermafrost.
This altitudinal morphoͲclimatic distribution has been described by several authors, especially
Chardon(1984,1989)whodistinguishesthefollowingbelts:
x
The infraͲperiglacial belt is concerned by freezeͲthaw cycles and seasonal frost, and
processesaredominatedbytalusproductionandsolifluction.
x
The periglacial belt sensu stricto is concerned by discontinuous permafrost, and processes
aredominatedbysolifluctionandrockglaciers.
x
ThesupraͲperiglacialbeltisconcernedbycontinuouspermafrost.IntheAlpsitcoversmainly
rockfacesandprocessesaredominatedbyepisodicrockfallsandglaciers.
2. Thermalpermafrostresponse
Climatewarminginducesanincreaseofairtemperature,henceanincreaseofthesensibleheatflux.
Thus the energy balance should become less negative. A general warming ofground temperatures
canthereforebeexpected.
However, climate warming will will most probably neither change solar radiation nor altitudinal
gradients, so that the overall altitudinal distribution of frost types and effects will remain, but is
expectedtoshifttowardshigheraltitudes.
Heat transfers from both solar radiation and heat flux to the ground are influenced by the snow
cover. Thus the evolution of the ground temperature will not only depend on the evolution of the
temperature, but also on the amount and type of winter precipitation and subsequently of the
distribution,durationandthicknessofthewintersnowcover.
7
PermaNET–Permafrostresponsetoclimatechange
2.1Migrationofpermafrostbelts
Temperaturechangeswillaffectallphenomenarelatedtofrost:diurnalfreezeͲthawcycles,seasonal
frost as well as permafrost. In general, a climate warming should induce a migration of all climate
relatedlimitsandbeltstowardshigheraltitudes.Thefollowingmainchangescanbeexpected:
x
ConcerningfreezeͲthawcycles:
o Lowerfrequencyandintensityatmiddlealtitudes
o Migrationofmaximalfrequencyandintensitytowardshigheraltitudes
o Seasonalshiftofcyclefrequencytowardsearlier/laterseason
o Increaseoffrequencyathighaltitudes
x
Concerningseasonalfrost:
o Decreaseoffrequencyanddepthatmiddlealtitudes
o Decreaseofdepthanddurationathigheraltitudes
o Replacementofpermafrostbyseasonalfrostatthelowerpermafrostlimit
x
Concerningpermafrost:
o Disappearanceofsporadicpermafrostatmiddlealtitudes
o Migrationofthelowerpermafrostlimittowardshigheraltitudes
o Replacementofcontinuousbydiscontinuouspermafrost
Fig. 1 Ͳ Processes which may occur within permafrost shown as a process of degradation (from
Dobinski2011).
8
PermaNETͲPermafrostResponsetoClimateChange
2.2Changesinthermalprofilesoftheground
TemperaturechangeswillaffectpermafrostmainlybythefollowingprocessesvisualisedalsoinFig.
1:(a)thickeningoftheactivelayer,(b)warmingofthepermafrosttemperature,(c)reductionofthe
permafrostthickness,and(d)decreaseoftheicecontent.
Increaseofactivelayerthickness
Thefirsteffectof climate warmingwillbe theincreaseoftheactivelayer thickness. Thisresponds
directly to interannual variations. It depends both on the thermal state acquired during the
precedingwinterandonthesummertemperature.
On rock glaciers there is often a strong contrast between the coarse blocky active layer and the
underlying iceͲrich and finer grained permafrost. In such cases, an increase of the active layer will
inducealossoficeatthepermafrosttableandageneralloweringofthesurface.
Ifthethawingofpermafrostgetsdeeperthantheseasonalfrostdepth,thisseasonalfreezingwillnot
beabletorefreezetheentirethawedlayer,andatalik(=unfrozenlayer)willremainduringwinter
between the seasonally frozen surface layer and the residual deeper permafrost. This situation
occurs when the permafrost warms up, and stops to be cooled from the surface. It can be
transitional (after a particularly warm year) or permanent (inactivation of permafrost). Such
situationsarelikelytooccurinthefutureatthelowerlimitsofdiscontinuouspermafrost.
Warmingofthepermafrost
Due to a low thermal conductivity of the ground, the heat transfer towards depth is very slow,
especially in iceͲrich permafrost. It therefore can take years to propagate through the profile. The
permafrosttemperatureisthereforeexpectedtoreactrathertodecadaltrendsthantointerannual
variations.
Thedownprofilepropagationofheatwavescanalreadybeinterpretedfromsomeboreholeprofiles,
where the minimal temperature is registered at a greater depth than the ZAA (zero annual
amplitude).Withtime,areductionofthecoolingfromthesurfacewillalsoallowawarmingfromthe
bottomupwards,duetothegeothermalheatflux.
Theroleofthesnowcover
All above mentioned evolutions postulate a linear response of ground temperature to air
temperature. However, ground surface temperature monitoring series show that the link is not
straightforward. The snow cover plays an important role through its insulation capacity, and can
inducesignificantdeviationsfromtheairtemperaturetrends.
The onset and thickness of the snow cover in early winter plays the major role: in November to
January,thedaysaretheshortestandthedirectradiationataminimum,whereasairtemperatures
reachalreadyverylowvalues.Ifthereisnosnowcover,thesoilwilldrasticallycooldown.Ashallow
snow cover may even increase the heat loss. On the contrary, an early and thick snow cover will
preventthesoilfromcoolingand“keep”theaccumulatedheatoftheprevioussummerandautumn.
The snow cover history in early winter will thus largely determine the winter ground surface
temperature, and the winter equilibrium temperature (WEqT), i.e. the mean ground surface
temperatureinFebruaryandMarch.Onareasofseasonalfrost,itwilldeterminethefreezingorno
freezingofthesoil,aswellasthefrostdepth.
9
PermaNET–Permafrostresponsetoclimatechange
The thickness of the snow cover during the winter has of course also a great importance. A thick
cover (at least ca. 0.8Ͳ1 m) insulates the ground from air temperature variations, and keeps the
thermal state acquired during autumn and early winter. A shallow or discontinuous (through wind
deflation)snowcoverallowsacontinuedcoolingofthegroundduringthewholewinter.
Thedurationofthesnowcoverinspringhasaninverseeffectthaninearlywinter.Alatesnowmelt
preventsthesoilfromthedirectsolarradiation,inaperiodwhereitisatamaximum,andprotectsit
fromthesensibleheatflux.Onthecontrary,anearlysnowmeltwillallowanearlierwarmingofthe
soil.Thus,thewintercoolingeffectofashallowsnowcovercanbecompensatedbyanearliersnow
melt.
Theeffectofthesnowcoveriswellvisibleontheinterannualtemperaturevariability.Itcaninduce
significant departures from the atmospheric temperature variations, e.g. cooling during rather
moderate winters, or warming despite of cool winters. Its real influence on middle to long term
temperaturetrendsremainsanopenquestion.Temperaturerecordsinboreholesatca10mdepth
showadistinctwarmingtrendfrom1987to1994,andthenastabilisation(PERMOS2009),butno
realcooling,unlikethesurfacetemperatures.
Thethermalevolutionofpermafrost,andmoregenerallyofgroundtemperatures,willthusdepend
on both air temperature and snow cover. Most climate models predict an increase of winter
precipitations.Ifthisoccursassnowfall,itcanhavevariouseffects,dependingonitsseasonality:
x
Earlysnowfallswouldincreasewarming
x
Athickhighwintersnowcoverwillratherincreasewarming
x
Alatesnowmeltwouldpreventgroundfromwarming.
Thesnowcoveronlyimpactsareasofmoderateslopeswhere athicksnowcovercandevelopand
stayduringwinter.Onsteeprockfacesthesnowcoverhasnoinfluence.
2.3Ratesofchange
Asmentionedabove,theheattransfertowardsdepthisveryslow,especiallyiniceͲrichpermafrost.
It therefore can take years to propagate through the profile. The permafrost temperature is
therefore rather expected to react to decadal trends than to interannual variations. Model
calculations show that it takes decades to reach a new equilibrium at depths of 20 to 30 m. In
bedrock,theheatpropagationcanbemuchfaster.
Theroleoficecontent
The propagation of temperature changes into the soil is strongly dependent from the ice content.
Due to the high amount of latent heat needed to melt ice, high ice content strongly reduces the
thermalconductivityoftheground.Onedimensionalheattransfermodelsshowthatanicecontent
of 60% almost totally blocks the propagation of seasonal temperature variations, and that the
meltingoftheicebodymayneedseveraldecades.
Fromthethermalpointofview,iceͲrichpermafrostisthereforelesssensitivetoclimatechangethan
“dry”permafrost.Ontheotherhand,thehighicecontentcanleadtosubsidenceandthermokarst
phenomena,duetovolumeloss.InflatterrainthethawingoficeͲrichpermafrostthereforeleadsto
greaterdisturbanceanddamagethanthethawingof“dry”permafrost.
10
PermaNETͲPermafrostResponsetoClimateChange
3. Geomorphicpermafrostresponse
Climate change will affect both spatial distribution and intensity of frost related processes. As
mentionedabove,thermaleffectsoffrostshowaclearaltitudinaldistribution.Thus,thefrostrelated
geomorphicprocessesandlandformsshouldmigratetohigheraltitudes,togetherwiththeirdriving
climate parameters. This however will mainly happen through changes in magnitude (intensity,
duration,frequency)oftheseprocesses.Inadditiontothealtitudinalshift,someparticularoreven
so far unknown phenomena may occur, due to transient states of ground conditions that are not
usuallyobservedunderclimaticallystableconditions.
3.1Frostshatteringanddebrisproduction
FrostshatteringanddebrisproductionarecontrolledbyfreezeͲthawcycles,anditisusuallyadmitted
thatthemaximaldebrisproductionoccursataltitudesofmaximalcyclefrequency,correspondingto
spring and autumn cycles. This altitudinal range has been defined as the talus window (Hales &
Roering2005).
Thetaluswindowisthusexpectedtomovetowardshigheraltitudes.Somestudiesalreadyshowa
decrease of talus production in the upper subalpine belt (Arquès 2005, Corona 2007), as well as a
decreaseofthetorrentialactivityontalussuppliedtorrents(Garitte2006).Thisevolutioncouldlead
to an overall decrease of geomorphic activity in middle altitudes, and favour the reͲvegetation of
screeslopes.
Ontheupperend,thenormalstateofhighaltitudinalrockwallsinthecontinuouspermafrostbeltis
ahighstabilityofrockfaces,withonlylimitedsporadicdebrissupplyfromoccasionalrockfalls.These
slopes where freezeͲthaw cycles were yet limited to the summer season could experience an
increaseoftalusproduction.Departurezonesofrockfallsarefrequentlyconcentratedinthelower
partsofthecontinuouspermafrostbelt.Bothrockfallsanddebrisproductionareclearlyrelatedto
warm periods during summer months, inducing a deepening of the heat penetration in rock faces
(Deline&Ravanel2011).
Regardingdebrisproductionfromcliffsandrockfaces,climatewarmingwillinducesignificanteffects
ontwodifferentaltitudinallevels:
x
Thetaluswindowcanbeexpectedtoshifttowardshigheraltitudes.Asaconsequence,talus
productionshoulddecreaseinthelowerparts,andincreasein theupperpartsofthebelt.
Thisbeltischaracterizedbyaregularproductionofsmalldebris.
x
Anewbeltofincreaseddebrisproductionisdevelopingatthelowerlimitofthecontinuous
permafrost belt. This belt is characterized by a sporadic production of coarse debris, up to
large or even very large rockfalls. Due to often high and steep slopes, these processes can
impactzonessituatedfarlowerdownslope.
Indirecteffectsonotherprocessescanbeexpected:
x
Rockglaciersareusuallysituatedintheupperpartofthetaluswindow.Anincreaseofthe
talusproductionatthislevelcouldthereforeinduceanincreaseofthedebrissupplytorock
glaciers. On a much longer time scale, the increase in volume of some talus bodies could
induce the formation of new rock glaciers. However, fast climate warming and hence
permafrostdegradationwillmaketheformationofnewrockglaciersmoredifficult.
x
Accumulationzonesofglaciersareoftensituatedatthefootofhighaltituderockwalls.An
increase of sporadic debris supply from these rock walls will induce an increase of debris
coveranddebriscontentoftheglaciers,andconsequentlyanincreaseoftheextentofdebris
coveronglaciers.ThisimpactthedynamicoftheseglaciersasforinstancetheMiageGlacier
11
PermaNET–Permafrostresponsetoclimatechange
inItaly(Deline&Orombelli2005)orthePasterzeGlacierinAustria(KellererͲPirklbaueretal.
2008).
3.2Solifluctionandseasonalfrost
Solifluction phenomena are related to seasonal frost and need a sufficient frost depth in order to
allow a waterͲsaturated thawed layer to form in spring over a still frozen impermeable soil. After
complete thawing, the soil drains and solifluction processes stop. A decrease of the seasonal frost
depthwillthereforeinduceashorteningoftheactivityperiodandhenceadecreaseofmovement
rates.ForamoredetailedclassificationofsolifluctiontypesrefertoMatsuoka(2001).
Inaddition,someprocesseslikeboundedsolifluctionareconnectedwithfinegrainedsoilsandwith
thepresenceofavegetationcover.Theupwardsmigrationofsuchphenomenawilldependonthe
presenceoffinegrainedmaterialandonthedevelopmentofalpinemeadows.Solifluctionprocesses
areverydifficulttostudyandonlyfewlongͲtermmonitoringsitesareknownintheAlps(e.g.Stingl
etal.2010).Ingeneral,thereisalackofdataonseasonalfrostandonrelatedprocesses.
3.3Rockglaciers
ThemostprominentfeaturesofAlpinepermafrostarerockglaciers.Theyarealsothemostmobile
ones.Thepossibleevolutionscenariosofrockglacierdynamicsaretherefore acentralconcernfor
Alpine mountain regions. Displacement time series and reconstructions of a dozen of rock glaciers
throughouttheAlps,indicatedifferenttypesofbehaviouratvarioustimescales.
Attheinterannualtimescale(Delaloyeetal.2008,Bodinetal.2009,KellererͲPirklbauer&Lieb2011):
x
Mostrockglaciersshowinterannualvelocityvariations,andthusreacttoclimatevariability.
x
These velocity variations are best correlated with a 12 month running mean of the ground
surfacetemperature.
x
Thevelocityvariationsshowatimelagofca1yeartowardsairandgroundtemperature.
x
Thesevariationsarereversiblewithwarmingleadingtoavelocityincreaseandcoolingtoa
velocitydecrease.Thevelocityratesremainintherangeof0.1toafewm/yͲ1).
Some rock glaciers have shown a distinct change in dynamic behaviour during the last decades or
years,withastrongincreaseofvelocitiesonpartsorthewholeoftherockglacier(e.g.Avianetal.
2005). Several types of behaviours can be distinguished (see PermaNET report 6.2 for study cases
andmoredetail):
x
Strong acceleration with opening of crevasses. The velocities increase by an order of
magnitude,uptoseveralm.yͲ1.Crevassesshowthatthedeformationratesexceedtheflow
capacityoftheice.
x
Ruptureanddislocationofthelowerpartoftherockglacier.Inthesecases,adistinctrupture
withascarpappearsintherockglacierandseparatesthelower,fastpart,fromtheupper,
“normal”movingpart.
x
Total collapse of the lower part. Only one case is known yet, where the lower part totally
collapsedintoamudflow(Krysieckietal.2008).
x
Extremeaccelerationoftherockglacier.Onecaseisknown,withvelocitiesofseveraltensof
m.yͲ1(Delaloyeetal.2010).
All these evolutions are apparently not reversible, but observation times are not yet sufficient to
knowtheendofthestory.Theacceleratedlowerpartstendtodislocate,whereastheupperparts
possiblyformanewrockglacierfront.Severalquestionsarise:
12
PermaNETͲPermafrostResponsetoClimateChange
x
Interannual variations are hard to explain. One possible explanation could be a higher
plasticityoficewithhighertemperature.However,themaindeformationratesoccurinthe
basallayerofrockglaciers,asshownbythefewexistinginclinometerprofiles.Thethermal
conductivityoficeͲrockmixturesisverylow,anditisunlikelythatinterannualtemperature
variationsreachthebottomoftheiceͲrichbody.Anotherexplanationcouldbeanincreased
presenceofinterstitialwater,facilitatinginternalmovementsbetweenicegrains.
x
The very high velocity increase observed on accelerating rock glaciers (some authors even
talkabout“surging”rockglaciers)impliesachangeofdisplacementmode.Rockglaciersare
usuallyconsideredtomoveatthesamewayascoldbasedglaciers,bydeformationoficeand
shearofthebasalicelayer.Velocitiesofseveralm/yͲ1andevenmoreseemtoindicatethe
onsetofabasalsliding.Thiswouldmeanthattheserockglaciershavechangedfroma“cold
glacier” to a “temperate glacier” displacement mode. The latter point is crucial for future
development,andhastoberelatedtothequestionofthemeltingpointtemperature.
x
Theconditionsthatleadarockglaciertoaccelerateornotareunknownyet.Thepresenceof
aconvexslopeseemstobenecessaryfortheonsetofstrongaccelerationsofthelowerpart
(e.g.Avianetal.2005).Thetotalcollapseoccurredonarockglaciermadeoffinematerial,
andispossiblyunlikelytohappenonacoarseblockyrockglacier.
Fromtheseconsiderations,thefollowingmostprobableevolutionscenarioscanbeproposed:
x
Interannualvariationswillcontinue.Velocityincreasesareexpectedtohappenmainlyafter
very hot summers associated with snow rich winters. Such episodes may occur more
frequentlyandonanincreasingnumberofrockglaciers.
x
Strongaccelerationsarelikelytooccuronanincreasingnumberofrockglaciers.
x
Acceleration episodes are a transient state, and will last only as long as the ice content is
sufficient to allow creeping. After ice loss is sufficient and the permafrost is no longer
supersaturatedwithice,movementsshouldslowdownandstop.
x
Total collapse or extreme accelerations will possibly remain exceptional cases, but a better
knowledgeisrequestedinordertobeabletoevaluatetheirprobability.
3.4Thermokarstphenomena
If permafrost is supersaturated in ice, the melting of ice due to permafrost degradation induced a
volume loss of the substrate affected which leads to instabilities at the surface and finally to
settlementofthesurface.Theseprocessescanespeciallybeobservedinareaswithlowinclinations
wheretheycreateamoreruggedtopographythanithasexistedbefore.Ifthereisanimpermeable
layerbeneath(e.g.thepermafrosttableitself)thermokarstlakesmaygetformed.
Settlementprocessesdonotonlylowerthesurfaceandchangeitstopographybutarealsoofspecial
significance for buildings and other infrastructures because they create the need to adapt the
constructionsinordertoavoiddamage.
4. Finalremarks
Table1givesanoverviewofthethermalandgeomorphicreactionsofpermafrosttoclimatechange
astheycanbeexpectedaccordingtoconsiderationsgiveninthepreviousparagraphs.Thechanges
listedinthetableservedasguidelinesforcarryingoutthecasestudiesinChapter3andinterpreting
theresultswhicharesummarizedinChapter4.
13
PermaNET–Permafrostresponsetoclimatechange
Table1ͲPossiblethermalandgeomorphicpermafrostreactionsrelevantforPermaNET.
Possiblethermalpermafrostreactions
Increasinggroundtemperature(inbedrock,fineandcoarsesediments)andhencepermafrostwarming
Thawingofpermafrostwiththreeeffects:(1)reductioninthespatialextentofpermafrost,(2)activelayerthickening,and
(3)increasinggroundͲwatercirculationandpressure
ChangesinthenumberoffreezeͲthawcyclesandmagnitude(durationandintensity)offreezingandthawingperiods
Possiblegeomorphicpermafrostreactions
Changesintherateofrockglacierdisplacement(verticallyandhorizontally)
Changesindisplacementmodeofrockglaciers(initiationofbasalsliding,collapse)
Changesinsolifluctionrates*
Changesincryogenicweathering(freezeͲthawcycles,icesegregation)*
Changesinthevolumeandextentofunstable/unconsolidatedmaterials
Changesinfrequencyandmagnitudeofmassmovementevents(e.g.rockfall,rockslide,debrisflow)*
Surfaceinstabilitiescausedbythermokarstprocesses/meltingofpermafrostice*
*notstrictlyrelatedtoonlypermafrostbuttoperiglacialenvironmentsingeneral
Monitoring of permafrost temperature is performed on three different kinds of permafrost sites
primarilyusingminiaturetemperaturedataloggers(MTD)orthermistorͲchainslocatedinboreholes
(fromveryshallowtodeep):
x
x
x
Permafrostandactivelayerinbedrock(fromnearͲverticalrockwallstoflatmorphologies)
Permafrostandactivelayerinfinegrainedmaterial(ratherflatmorphology)
Permafrost and active layer in coarse grained and blocky material (scree slopes, rock glaciers;
fromsteepslopestoratherflatmorphologies)
Climate conditions at permafrost sites are monitored by meteorological stations. Monitoring of
dynamic conditions in permafrost environments is carried out by geodetic, photogrammetric,
terrestrial laserscanning (LiDAR or TLS), differential SAR interferometry (DINSAR) and DGPS
techniquesaswellasvisualobservationsandcalculations.Thismonitoringfocuseson:
x
x
x
Massmovement(e.g.rockfall)frequencyandmagnitude
Rateofrockglacierdisplacement(verticallyandhorizontally)
Physicalweathering(freezeͲthawcycles)
TosumupAction5.3usesawiderangeofmethodsintheassessmentofthethermalanddynamic
reaction scenarios of different permafrost typologies. Research in this action is carried out in two
steps: (i) Establishment of the relationship between measured climate data and observed thermal
and geomorphic permafrost reactions (Table 1) using available datasets collected during the last
years and decades (cf. Chapter 3). (ii) Combining the established relationships with data from the
climatescenariofortheyear2050presentedinChapter2formsthebasisforestimationsoffuture
changesinpermafrostdistribution(verticallyandhorizontally),intheactivelayerthicknessorinthe
ratesofrockglacierdisplacement.
References:
Arquès S., 2005: Géodynamique et biodiversité des versants asylvatiques du massif de la Grande Chartreuse.
Evolutionliéeauréchauffementclimatiqueetproblèmedegestion.ThèseUniversitéJosephFourier,
Grenoble.
AvianM.,KaufmannV.&LiebG.K.,2005:RecentandHolocenedynamicsofarockglaciersystem:Theexample
ofHinteresLangtalkar(CentralAlps,Austria).NorwegianJournalofGeography,59,149Ͳ156.
14
PermaNETͲPermafrostResponsetoClimateChange
BodinX.,ThibertE.,FabreD.,RiboliniA,SchoeneichP.,FrancouB.,Reynaudl.&FortM.,2009:Twodecadesof
responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafrost and
PeriglacialProcesses,20,331Ͳ344.
ChardonM.,1984:Montagneethautemontagnealpine,critèresetlimitesmorphologiquesremarquablesen
hautemontagne.RevuedeGéographieAlpine72(2Ͳ4):213Ͳ224.
ChardonM.,1989:Essaid'approchedelaspécificitédesmilieuxdelamontagnealpine.RevuedeGéographie
Alpine77(1Ͳ3):15Ͳ18.
Corona C., 2007: Evolution biostasique du paysage, géodynamique nivéoͲpériglaciaire et fluctuations
climatiquesrécentesdanslahautevalléedelaRomanche(AlpesduNord,France).ThèseUniversité
JosephFourier,Grenoble.
DelineP.&OrombelliG.,2005:GlacierfluctuationsinthewesternAlpsduringtheNeoglacial,asindicatedby
theMiagemorainicamphitheatre(MontBlancmassif,Italy).Boreas,34:456–467.
Deline P. & Ravanel L. (2011). Chapter 3.9: Case studies in the European Alps – Rockfalls in the Mont Blanc
massif,FrenchͲItalianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrost
responsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportof
Action5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1.
Delaloye R., Perruchoud E., Avian M., Kaufmann V., Bodin X., Hausmann H., Ikeda A., Kääb A., KellererͲ
PirklbauerA.,KrainerK.LambielC.,MihajlovicD.,StaubB.,RoerI.,ThibertE,.2008:Recentinterannual
variations of rockglacier creep in the European Alps. 9th International Conference on Permafrost,
Fairbanks,UniversityofAlaska:343–348.
DelaloyeR.,MORARDS.,AbbetD.,HilbichC.,2010.TheSlumpoftheGrabenguferRockGlacier(SwissAlps).
3rdEuropeanConferenceonPermafrost(EUCOPIII),Svalbard,Norway:157.
DobinskiW.,2011:Permafrost.EarthͲScienceReviews108:158–169.
FrenchHM.,2007:ThePeriglacialEnvironment.3rdedition.WestSussex:JohnWileyandSons,458pp.
Garitte G., 2006: Les torrents de la vallée de la Clarée (Htes Alpes, France). Approche géographique et
contribution à la gestion du risque torrentiel dans une vallée de montagne. Thèse Université
scientifiqueettechniquedeLille.
Hales TC, Roering JJ., 2005: ClimateͲcontrolled variations in scree production, Southern Alps, New Zealand.
Geology33:701Ͳ704.
KellererͲPirklbauerA.&LiebG.K.,2011:Recentrockglaciervelocitybehaviourandrelatednaturalhazardsin
the Hohe Tauern Range, central Austria. PermaNET Project Report Ͳ Contribution of IGRS to Action
6.2/Group1–Rockglacier.
KellererͲPirklbauerA.,LiebG.K.,AvianM.&GspurningJ.2008:TheresponseofpartiallydebrisͲcoveredvalley
glacierstoclimatechange:TheExampleofthePasterzeGlacier(Austria)intheperiod1964to2006.
GeografiskaAnnaler,90A(4):269Ͳ285.
Krysiecki,J.M.,Bodin,X.,Schoeneich,P.,2008.CollapseoftheBérardRockGlacier(SouthernFrenchAlps).9th
InternationalConferenceonPermafrost,Fairbanks,UniversityofAlaska:153–154.
Matsuoka N., 2001: Solifluction rates, processes and landforms: a global review. Earth Science Reviews, 55,
107Ͳ134.
PERMOS 2009: Permafrost in Switzerland 2004/2005 and 2005/2006. Nötzli J., Naegeli B., Vonder Mühll D.
(eds). Glaciological Report Permafrost N° 6/7, Cryospheric Commission of the Swiss Academy of
Sciences.
Stingl, H., Garleff, K., Höfner, T., Huwe, B., Jaesche, P., John, B. and Veit, H., 2010: Grundfragen des alpinen
Periglazials Ͳ Ergebnisse, Probleme und Perspektiven periglazialmorphologischer Untersuchungen im
Langzeitprojekt„GlorerHütte“inderSüdlichenGlocknerͲ/NördlichenSchobergruppe(SüdlicheHohe
Tauern,Osttirol).SalzburgerGeographischeArbeiten,15Ͳ42.
15
2.
TemperatureChangeintheEuropeanAlps
Citationreference
KroisleitnerCh.,ReisenhoferS.,SchönerW.(2011).Chapter2:ClimateChangeintheEuropeanAlps.
In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost response to present and
future climate change in the European Alps. PermaNET project, final report of Action 5.3. OnͲline
publicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.16Ͳ27.
Authors
Coordination:ChristineKroisleitner
Involvedprojectpartnersandcontributors:
Ͳ Central Institute for Meteorology and Geodynamics (ZAMG) – Christine Kroisleinter, Stefan
Reisenhofer,WolfgangSchöner
Content
Summaryfordecisionmakers
1. Temperaturechangeintherecentpast
2. Projectedtemperaturechangeuntil2050
References
16
PermaNET–ClimateChangeintheEuropeanAlps
Summary
TheairtemperatureintheEuropeanAlpshasincreasedbyabout2°Csincethelate19thcentury.
The warming was particularly pronounced since the beginning of the 1980s. The temperature
increasewasassociatedwithdegradationoftheAlpinepermafrost.Thispapersummarizesthe
observedchangesofairtemperatureandusesresultsfromclimatemodelsimulationstoderive
future scenarios of air temperature in the Alps for the period 2021Ͳ2050. In order to provide
morerelevantinformationonthermalresponseofpermafrostthepaperusesanempiricalmodel
torelateairtemperaturedatatonumberoffrostdays,numberoficedaysandnumberoffreezeͲ
thaw days for the Alps at altitudes above 1800m a.s.l. for both the present climate (reference
period 1961Ͳ90) and for a future climate 2021Ͳ2050. The model results show that highest
numbersoffreezeͲthawdaysaresimulatedforaltitudesof1800ma.s.l.(evenhighervaluesare
modeled for lower elevations) with about 100 days per year and decreasing number of freezeͲ
thawdayswithincreasingelevation.Moreover,themodelshowsthatthenumberoffreezeͲthaw
dayswillgenerallyincreaseforaltitudesabove1800ma.s.l.byvaluesup to4daysayearuntil
2021Ͳ2050,thusincreasingtheweatheringatallelevationsabove1800ma.s.l.
17
PermaNET–Permafrostresponsetoclimatechange
1. Temperaturechangeintherecentpast
The Alps as one of the major topographic forms in Europe influences the atmospheric circulation
overawiderangeofscales.Theconsequencesofthisfactareavarietyofdifferentclimates,from
maritimetocontinentalandfromlowlandtomountainous.InaclimateanalysisoftheGreaterAlpine
Region(GAR)Brunettietal.(2009)highlightedanaverageGARwarmingtrendofabout1.3°Cover
thecommonperiodcoveredbyalltheclimatevariables(1886Ͳ2005),1.4°CforthereferenceIPCCͲ
period(1906Ͳ2005)whichisawarmingabouttwiceaslargeastheglobaltrendreferredtobyIPCC
(2007). Furthermore, Brunetti et al. (2009) found out, that for the GAR region the majority of the
warmestyearsintheperiod1774Ͳ2005weremeasuredinthepast15to20years.Themostextreme
summerwasfoundfor2003,whereasthemostextremesummercoldeventhappenedin1816after
thevolcaniceruptionsofTambora.Itisworthnoticingthatthe2003summertemperaturewas4.2
standarddeviationsabovethecorresponding2003summernormalvalue,butthe1816coldextreme
was only 2.6 standard deviations lower than the summer normal value corresponding to summer
1816.
The20thcenturyclimateinEuropevariednotonlyintime,butalsofromlocationtolocation.1900to
1940, the mean annual air temperature (MAAT) increased in western and northern Europe, while
mostoftheremainingpartofthecontinentexperiencedonlysmallchanges.From1940to1975was
aperiodofcoolinginthearctic,butincontinentalEuropejustthenorthernpartwasaffectedbythis
trend.TheeasternpartofEuropeexperiencedaslightwarmingduringthattimeandthesouthern
part kept nearly constant. In the period 1975Ͳ2000 widespread climate warming in Europe was
recorded. GenerallytheSouthͲWestofEuropeand Scandinaviaweremostaffected,butseasonally
therewerelargeregionaldeviationsfromthisannualtrend.Inwinterthetemperatureinnorthern
andwesternEuropewasincreasing,whereasinspringthetemperatureroseespeciallyinthecentral
andsouthͲwesternparts.SummertemperatureswerecharacterizedbyanincreasealloverEurope,
mostpronouncedinthesouthernpart.Autumn’stemperaturewasmainlycharacterizedbyitsspatial
variability(Harrisetal.,2009).
Climatechangeinthepast250yearsintheAlpshasbeenextensivelystudiedintheprojectHISTALP
(Auer et al., 2007). The HISTALP database covers the Greater Alpine Region (GAR) with monthly
homogenised records of temperature, pressure, precipitation, sunshine and cloudiness for times
datingbackto1760fortemperatureand1800forprecipitation.ThelongͲtermwarmingtrendvisible
intheseasonalandannualmeantemperaturetimeseriesofGARcouldnotbeconfirmedforother
climateparameters,likeprecipitation,forwhichAueretal.(2005)detectedtwoantagonistictrends,
awettingtrendintheNorthͲwestoftheAlps(sincethe1860s)andadryingtrendintheSouthͲeast
(since 1800). Remarkably, even the highest mountain observatories within the Alps such as
Sonnblick,JungfraujochandZugspitzeshowthesametemperaturetrendsasMunich,Vienna,Milano
orSarajevo.TheglobalmeantemperatureseriesshowonlyhalfofthelongͲtermwarmingoftheAlps
sincethemidͲ19thcentury.
2. Projectedtemperaturechangesuntil2050
2.1Introduction
Asinthepast,theAlpswillalsoinfuturebeexposedtoastrongerwarmingthantheearthingeneral.
AccordingtotheIPCC(2007)scenarios,thetemperatureforwholeEuropewillrisefor3.3°,whereas
theAlpswillhavetofaceatemperatureriseof3.9°Cuntiltheendofthe21stcentury(Figure1).In
the highͲmountainareas above1500ma.s.l.the warmingfromclimatemodelprojectionscouldbe
evenhigher(4.2°C;EEAReportNo.8,2009).
18
PermaNET–ClimateChangeintheEuropeanAlps
Fig.1–Temperatureanomaly1860to2100fortheGreaterAlpineRegion(GAR)relativetotheWMO
normal period 1961Ͳ1990 derived from the IPCCͲAR4 AOGCM Multimodel Ensemble (anthropogenic
andnaturalforcingpriorto2001,anthropogenicforcingonlyfrom2001Ͳ2100).Thegreenlineshows
measuredtemperatureanomaliesfromtheHISTALPͲproject.(Source:Schöneretal.,2011).
2.2 Experimentaldesign
Althoughpermafrostinthehighmountainareasisnotverywellknownyet,itisobviousthatthereis
arelationshiptoclimaticelements.However,ifthisrelationshipwouldbeeasytodescribe,itwould
have been done decades ago. The relationship of nearͲsurface permafrost temperatures and air
temperature is strongly affected by snow thickness and duration, which are themselves driven by
atmospheric conditions (Harris et al., 2009). This investigation does not focus on change in the
permafrostͲdistribution, but on the change in atmospheric frostͲbehaviour. The presence of frost
above the earth’s surface is crucial for the existence of permafrost, but furthermore for the
developmentandconservationofasnowcover.
The core of this investigation is the comparison of frostͲ, iceͲ, and freezeͲthaw days between the
climateperiods1961Ͳ90and2021Ͳ2050.Adaybecomesclassifiedasfrostday(FD),whenthedaily
minimum temperature is below zero. If also the daily maximum temperature is below the freezing
point, the day is classified as ice day (ID). The difference between ice days and frost days, which
meansalldayswithadailyminimumtemperaturebelow0°Candadailymaximumabovethislimit,
get classified as freezeͲthaw days (FTD). It is obvious from future climate scenarios, that frost
frequencywillgetless.
Accordingtotheclimatictrend,severalAlpineregionsexperiencedadecreaseinfrostfrequency(FF)
and an extension of the frostͲfree season (Auer et al. 2005). In Austria observations indicate, that
duringthe20thcenturyareductionofthefrostseasonby17daysintheflateasternregion(Vienna)
and by 22 days in the high Alpine region around the mountain peak station of Sonnblick (3100m
a.s.l.)hashappened.
19
PermaNET–Permafrostresponsetoclimatechange
Incanbeassumed,thatinawarmerclimatetheintensityoffrostweatheringchanges,causedbythe
spreading of the freezeͲthawͲcyclesͲzone to higher altitudes. How this change could happen in an
A1B climate scenario was investigated for the high mountainous zone of the entire Alps above
1800ma.s.l.
2.3 Empiricalapproachtoestimatefrostdays,icedaysandfreezeͲthawdays
Auer et al. (2005) found an empirical relationship of a tangens hyperbolicus function to estimate
frostfrequency(FF)frommonthlymeanairtemperature.FFisdefinedbythenumberoffrostdays
dividedbythenumberofdayswithintheconsideredmonth.ThetanhͲfunctionwascalculatedusing
temperature data from 363 climate stations in Austria including the high alpine station Sonnblick
(3105 m a.s.l.). Auer et al. (2005) calculated at least 66% FF (20.5 FD) for January in Austria for all
stations.InApriltheFFcoveredawidespectrum,from100%(30FD)atthemountainpeakstation
Sonnblicktonearlynofrostinthelowlands.InJulyonlyatthemountainstationSonnblickfrostdays
were registered. Hence, without taking into account highͲelevation mountain stations it would be
impossibletoreceiverobustcoefficientsforthemodel.Overall,thetanhͲmodelwasabletoexplain
abound55%ofthethevarianceofFFdatafromairtemperaturedata.Validationofthemodelwith
datafromtheentireGARshowedthatthereisalmostnodifferenceintheperformanceifthemodels
arecalibratedonAustriandataorondatafortheentireGAR(seeAueretal.,2005,fordetails).
IncontrarytoAueretal.(2005)inourstudyweused30Ͳyearsclimatenormals(1961Ͳ90)torelate
annualfrostdaystoannualairtemperaturemeans,whichsignificantlyincreasedtheperformanceof
statistical relationships. This approach is motivated from the aim of this study to compare present
mean climate with a future climate mean scenario for both frost days and ice days. Consequently,
the frequency of ice days (as the number of ice days divided by the number of days within the
consideredmonth)wererelatedinasamemannertomeanannualairtemperatureusingatanhͲfit
forthereferenceperiod1961Ͳ90.ThestatisticsofthederivedtanhͲmodelsareshowninTables1and
2.InafinalstepthefreezeͲthawdayswerecalculatedfromthedifferencebetweenicedaysandfrost
days.
Table1–Statisticalmodel(generalmodel,coefficientsandgoodnessoffit)inordertocomputeannualfrostday
frequency(f(x))fromannualairtemperature(x)forthereferenceperiod1961Ͳ90
Generalmodel
Coefficients
(with95%confidencebounds)
Goodnessoffit
SSE:3530
f(x)=50+(50*tanh(a*x+b))
a=Ͳ0.09316(Ͳ0.0947,Ͳ0.09163)
RͲsquare:0.9847
b=0.3437(0.3328,0.3546)
AdjustedRͲsquare:0.9847
RMSE:2.77
20
PermaNET–ClimateChangeintheEuropeanAlps
MeanAnnualAiremperature(°C)
Fig.2–RatiofrostdaystototaldaysversusmeanannualairtemperatureinAustriausingdatafrom
363climatestationsinAustriafortheperiod1961Ͳ90.TheredlineisatanhͲfit.Statisticalmeasures
ofthefitareshowninTable1.
MeanAnnualAiremperature(°C)
Fig.3–RatioicedaystototaldaysversusmeanannualairtemperatureinAustriausingdatafrom
363climatestationsinAustriafortheperiod1961Ͳ90.TheredlineisatanhͲfit.Statisticalmeasures
ofthefitareshowninTable2.
21
PermaNET–Permafrostresponsetoclimatechange
Table2–Statisticalmodel(generalmodel,coefficientsandgoodnessoffit)inordertocomputeannualiceday
frequency(f(x))fromannualairtemperature(x)forthereferenceperiod1961Ͳ90
Generalmodel
Coefficients
(with95%confidencebounds)
Goodnessoffit
SSE:1323
f(x)=50+(50*tanh(a*x+b))
a=Ͳ0.1248(Ͳ0.1259,Ͳ0.1236)
RͲsquare:0.9951
b=Ͳ0.3573(Ͳ0.3638,Ͳ0.3507)
AdjustedRͲsquare:0.995
RMSE:1.696
2.4 Empiricalapproachtoestimatefrostdays,icedaysandfreezeͲthawdaysfortheentireAlps
WeusedthespatiallyhighͲresolutiontemperatureclimatologyofHiebletal.(2009)tocomputethe
number of frost days, the number of ice days and the number of freezeͲthaw days for the Alpine
region for both the present climate and the future climate 2021Ͳ2050. However, our study was
restrictedtotheAlpineareaabove1800ma.s.l.asthezonemostrelevantforpermafrost.Inafirst
stepthe~1kmresolutionGARmonthlytemperatureclimatology(1961Ͳ90)wasdownscaledusingthe
~30mͲresolution ASTER GDEM for the high mountain area of the Alps. The temperatureͲgrid was
recalculatedaccordingtotheapproachofHiebletal.(2009),whichheusedforthedevelopmentof
the~1kmspatialresolutionGARͲclimatologybasedon1961Ͳ1990climatenormals.TheworkofHiebl
etal.(2009)isbasedonastationnetworkof1,726climatestationsfortheGreaterAlpineRegion,
whichwerecarefullyqualitycheckedandhomogenized.
AccordingtoHiebletal.(2009)weusedseveralgeographicalvariablestocomputeairtemperature
bymeansofamultilinearregressionapproach:
x
x
x
x
x
Thelongitudinalgradientstakeintoaccounttheunderlyingoceanictocontinentaltransition,
which occurs from the western to the eastern edge of the GAR. However, the variance of
temperatureexplainedfromlongitudeislimitedto1%oftheannualvariance.
On the contrary to this small amount, latitude explained 19% of the variance of annual air
temperature by mainly capturing the effect of the SouthͲNorth solar radiation gradient on
temperature.
Asexpected,thelargestpartoftemperaturevariancecouldbeexplainedbyelevation.The
verticalregressionmodelexplainsasmuchas69%ofthetemperaturevariancefortheyearly
averages,althoughduringwinterduetostableatmosphericlayeringthevaluedecreasesto
around45%.
For considering different temperature behaviours at low altitude areas and high altitude
areasHiebletal.(2009)introduceda3verticallayersͲmodel.Thelowestlayerrangesfrom
600minthesouthernpartsupto800minthewesternpartsoftheGAR.Thehighelevation
layersverticalextentbeginsat1800ma.s.l.Betweenthetwolayersthetemperatureswere
simplyinterpolated.Inourstudyweusedonlythehighest(above1800ma.s.l.)layer.
Slopes got implemented in the model by using an analysis of Auer & Böhm (2003) which
systematicallyanalyseddatafrom85Austriansiteswithdetailedsitedescription.Theyfound
22
PermaNET–ClimateChangeintheEuropeanAlps
x
monthly deviations from the mean for NorthͲ and SouthͲfacing slopes ranging from Ͳ0.2 to
1.0°C.
Maritimeinfluencewastakenintoaccountbyestablishingatopographicallyweightedfield
of distances from the coast. Hiebl et al. (2009) found a surprisingly strong dependency of
temperature on distance from the coast. At a yearly average the distance to the coast
variableexplained41%ofthetemperaturevariance.
The 30year highͲalpine monthly mean temperatures were calculated from the following regression
equation:
t01=9.412932+Ͳ0.190362*[lon_1]+Ͳ0.035543*[lat_1]+Ͳ0.005002*[DEM]+Ͳ0.003347*[coast]
[lon_1]Ælongitude
[lat_1]Ælatitude
[DEM]Ædigitalelevationmodel
[coast]Æcoastdistancegrid As shown by Hiebl et al. (2009), considering longitude, latitude and the distance from the coasts
besides elevation reduced the average monthly standard error to 0.79°C per month. Furthermore
Hiebl et al. (2009) used the GTOPO30ͲDEM with a spatial resolution of 30 arc seconds, which
corresponds to about 1km. GTOPO30 has a root mean square error of about 18m. Applied on
monthlylapseratemodels,theDEMinaccuracyleadstoatemperatureerrorof0.09°Conaverage.
In this study we used the empirical temperature model of Hiebl et al. (2009) but replaced the
GTOPO30ͲDEMbytheASTERGDEM,thusrefiningthespatialresolutionoftemperaturegridto1arc
second (~30m). Compared to GTOPO, with an error of surface elevation of about 18m, the ASTER
GDEM has an overall root mean square error of 10.87m. The error of surface elevation can be
assumedtobeapproximately20mataconfidencelevelof95%.
Based on the refined climatology (climate normal 1961Ͳ90) of annual air temperature and the
empiricalmodelsforfrostdays(Tab.1andFig.2)andforicedays(Tab.2andFig.3)30mͲrasterdata
ofclimatenormals(referenceperiod1961Ͳ90)offrostdaysandicedaysfortheAlpineregionwere
computed.
2.5 Estimationoffuturefrost,iceandfreezeͲthawͲcyclesdaysscenariosfortheperiod2021Ͳ2050
For projecting the temperature of the Alps for the future period 2021Ͳ2050 we used the regional
climate model experiment of Hollweg et al. (2008) which dynamically downscaled the ECHAM5Ͳ
MPIOMͲA1B scenario (Röckner et al., 2003) by means of the regional climate model CLM. The
performance of this CLM model run for the GAR was extensively tested in Schöner et al. (2011).
Particularly,itwasshownbySchöneretal.(2011)thatcomparedtoanensemblessimulationforthe
Alpineregion(usedfromthePRUDENCEensembles;seeFreietal.,2006)theusedCLMsimulation
shows a temperature change which lies close to the ensembles median. The spatial pattern of the
temperaturechangefor2021Ͳ2050relativeto1976Ͳ2007derivedfromtheCLMsimulationisshown
inFigure4.ThespatialresolutionoftheCLMgridis18x18km.
23
PermaNET–Permafrostresponsetoclimatechange
Fig. 4 Ͳ Change of seasonal mean temperature (left: winter season, right: summer season) for the
GreaterAlpineRegionfor2021Ͳ2050relativeto1976Ͳ2007(fromSchöneretal.,2011,sourceforCLM
data:Hollwegetal.,2008).
The spatial distributions of the number of frost days, the number of ice days and the number of
freezeͲthawdaysfortheclimatereferenceperiod1961Ͳ90fortheregionoftheEuropeanAlpswith
elevationshigher1800ma.s.l.areshowninFigures5,6and7.ThehighestnumberoffreezeͲthaw
dayswerecomputedforlowestelevationscloseto1800ma.s.l.Withhigherelevationsthenumber
offreezeͲthawdaysdecreasesfromabout100daysat1800ma.s.l.tolessthan15daysathighest
elevationsoftheAlps.Changesinthenumberoffrostdays,thenumberoficedaysandthenumber
offreezeͲthawdaysaredisplayedinFigures8,9and10fortheperiod2021Ͳ2050relativeto1961Ͳ90
based on the temperature change from the CLM simulations. Temperature increase will generally
increasethenumberoffreezeͲthawdaysbynumbersupto4daysperyear,thusincreasingalsothe
frostweathering.
Acknowledgements.–ThedigitalelevationmodelwascontributedbyMETIandNASAtotheGlobal
EarthObservationSytemofSystems(GEOSS)andwasdownloadedfromtheEarthRemoteSensing
DataAnalysisCenter(ERDSAC)ofJapanandNASA`sLandProcessDistributedActiveArchiveCenter
(LP DAAC) http://asterweb.jpl.nasa.gov/gdem.asp. Climate model results of CLM regional climate
model were provided by Deutsches Klimarechenzentrum within the frame of the project
AnpassungsstrategienandenKlimawandelfürÖsterreichsWasserwirtschaft.
24
PermaNET–ClimateChangeintheEuropeanAlps
Fig.5–Frostdays(1961Ͳ90)intheAlpsforthesubregionwithelevationabove1800ma.s.l.
Fig.6–Icedays(1961Ͳ90)intheAlpsforthesubregionwithelevationabove1800ma.s.l.
Fig.7–FreezeͲthawdays(1961Ͳ90)intheAlpsforthesubregionwithelevationsabove1800ma.s.l.
25
PermaNET–Permafrostresponsetoclimatechange
Fig. 8 – Estimated difference in frost days between 1961Ͳ90 and 2021Ͳ2050 for the subregion with
elevationsabove1800ma.s.l.
Fig. 9 – Estimated difference in ice days between 1961Ͳ90 and 2021Ͳ2050 for the subregion with
elevationsabove1800ma.s.l.
Fig.10–EstimateddifferenceinfreezeͲthawdaysbetween1961Ͳ90and2021Ͳ2050forthesubregion
withelevationsabove1800ma.s.l.
26
PermaNET–ClimateChangeintheEuropeanAlps
References:
ASTER GDEM Validation Team, 2009: METI/ERSDAC, NASA/LPDAAC, USGS/EROS, (2009): ASTER
GlobalDEMValidationSummaryReport,June2009
Auer I. & Böhm R., 2003: Jahresmittel der Lufttemperatur. Hydrologischer Atlas Österreichs.
ÖsterreichischerKunstͲundKulturverlag,Vienna,MapSheet1.6.
AuerI.,MatullaC.,BöhmR.,UngersböckM.,MaugeriM.,NanniR.,PastorelliR.,2005:Sensitivityof
frostoccurrencetotemperaturevariabilityintheEuropeanAlps.Int.JournalofClimatology,
25,1749Ͳ1766.
AuerI.,BöhmR.,JurkovicA.,LipaW.,OrlikA.,PotzmannR.,SchönerW.,UngersböckM.,MatullaCh.,
BriffaK.,JonesP.,EfthymiadisD.,BrunettiM.,NanniT.,MaugeriM.,MercalliL.,MestreO.,
MoisselinJ.ͲM.,BegertM.,MüllerͲWestermeierG.,KvetonV.,BochnicekO.,StastnyP.,Lapin
M.,SzalaiS.,SzentimreyT.,CegnarT.,DolinarM.,GajicͲCapkaM.,ZaninovicK.,MajstorovicZ.
& Nieplova E. 2007: HISTALP – Historical instrumental climatological surface time series of
theGreaterAlpineRegion1760Ͳ2003.InternationalJournalofClimatology,27,17Ͳ46.
BrunettiM.,LentiniG.,MaugeriM.,NanniR.,AuerI.,BöhmR.,SchönerW.,2009:Climatevariability
andchangeintheGreaterAlpineRegionoverthelasttwocenturiesbasedonmultiͲvariable
analysis.Int.JournalofClimatology,Vol.29,Issue15,2197Ͳ2225DOI:10.1002/joc.1857
EEA Report No. 8, 2009: Regional climate change and adaptation. The Alps facing the challenge of
changingwaterresources.EuropeanEnvironmentAgency,Copenhagen,143pp.
FreiC.,SchöllR.,FukutomeS.,SchmidliJ.,VidaleP.L.,2006:Futurechangeofprecipitationextremes
inEurope:Intercomparisonofscenariosfromregionalclimatemodels.JournalofGeophysical
Research,111:D06105
Harris C., Arenson L. U., Christiansen H. H., Etzelmüller B., Frauenfelder R., Gruber S., Haeberli W.,
Hauck C., Hölzle M., Humlum O., Isaksen K., Kääb A., KernͲLütschg A.M., Lehning M.,
MatsoukaN.,MuronJ.B.,MötzliJ.,PhilipsM.,RossN.,SeppäläM.,SpringmanS.M.,Vonder
Mühll D., 2009: Permafrost and climate in Europe: Monitoring and modelling thermal,
geomorphologicalandgeotechnicalresponses.EarthͲScienceReviews,92,117Ͳ171.
HieblJ.,AuerI.,BöhmR.,SchönerW.,MaugeriM.,LentiniG.,SpinoniJ.,BrunettiM.,NanniT.,Tadiđ
PerēecM.,BihariZ.,DolinarM.,MüllerͲWestermeierG.,2009:AhighͲresolution1961Ͳ1990
monthlytemperatureclimatologyfortheGreaterAlpineRegion.MeteorologischeZeitschrift,
18,507Ͳ530.
HollwegH.D.,BöhmU.,FastI.,HennemuthB.,KeulerK.,KeupͲThielE.,LautenschlagerM.,Legutke
S., Radtke K., Rockel B., Schubert M., Will A., Woldt M., Wunram C., 2008: Ensemble
simulations over Europe with the regional climate model CLM forced with IPCC AR4 Global
Scenarios.M&DTechnicalReport,3,2008.
IPCC,2007:ClimateChange2007:ThePhysicalScienceBasis.ContributionfromtheWorkingGroupI
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
CambridgeUniversityPress:Cambridge,UnitedKingdomandNewYork,NY,USA,996pp.
RöcknerE.,Bäuml G.,BonaventuraL., BrokopfR.,Esch M., Giorgetta M.,Hagemann S.,KirchnerI.,
Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A., 2003: The
atmospheric general circulation model ECHAMͲ5, Part I: Model description. MaxͲ PlanckͲ
InstitutfürMeteorologie,Report349.
Schöner W., Böhm R., Haslinger K., 2011: Klimaänderung in Österreich – hydrologisch relevante
Klimaelemente.Österr.WasserͲundAbfallwirtschaft1Ͳ2/2011,11Ͳ20
27
3.
CasestudiesintheEuropeanAlps
3.1
Overviewoncasestudies
Citationreference
KellererͲPirklbauerA,LiebG.K.(2011).Chapter3.1:CasestudiesintheEuropeanAlps–Overviewon
case studies. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost response to
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.28Ͳ34.
Authors
Coordination:AndreasKellererͲPirklbauer
Involvedprojectpartnersandcontributors:
Ͳ Institute of Geography and Regional Science, University of Graz, Austria (IGRS) – Andreas
KellererͲPirklbauer,GerhardKarlLieb
Content
Summary
1. Theregionaldistributionofthecasestudies
2. Projectpartnersandresearchactivities
3. Structureofthecasestudies
References
28
PermafrostResponsetoClimateChange
Summary
Thecasestudiesprovideinformationrelevantofthereactionsofpermafrosttoclimatechange
from study sites which are distributed between 47°22’ and 44°59’N and between 06°10’ and
14°41’E,respectively,coveringagreatpartoftheAlpineArc.Fromaspatialpointofview,the
results thus can be considered sufficiently representative for the entire Alps. The methodology
usedcoversabroadspectrumoftechniquesmakingtheresultswellreliable.
Alltheactivitieswerecarriedoutbyscientificinstitutionswhicharewellprovidedwithbestlocal
field experience and in many cases with regional actor networks. All the case studies have a
similarconceptualstructurebeginningwithashortpresentationofthesite,thengivingconcise
informationonthemethodsusedandtheresultselaborated.
Eachcasestudyfinallyprovidessomeassumptionsonthefuturedevelopmentofpermafrostin
therespectiveareatakingintoaccounttheclimatescenariopresentedinChapter2.
29
PermaNET–Permafrostresponsetoclimatechange
1. Theregionaldistributionofthecasestudies
Theassessmentofthermalanddynamicreactionscenariosofdifferentpermafrostsitesiscarriedout
at13siteswithintheEuropeanAlps.Figures1and2depictthelocationofthestudysiteswithinthe
AlpineArcaswellasvisualimpressionsofthestudysites.Table1givesanoverviewforeachofthese
study sites. The study sites are distributed between 47°22’ and 44°59’ N and between 6°10’ and
14°41’ E, respectively, with Hochreichart (A) being the northernmost and easternmost and
Bellecombes (F) the westernmost and southernmost site. Thus the sites cover a great part of the
AlpineArcwiththeexceptionoftheSwissAlps(whicharemissingduethecompositionoftheproject
staff).ThesitesalsocoverthemostimportantgeologicalunitsoftheAlps(e.g.metamorphicrocksof
theCentralZoneoftheEasternAlpsandlimestonesoftheSouthernAlpsaswellasgranitesofthe
CentralMassivesoftheWesternAlps).Thus,intermsofthegeographicaldistribution,theresultscan
beconsideredsufficientlyrepresentativefortheentireAlps.
Fig.1–Locationofthe13PermaNETstudysitesrelevantfortheassessmentofthermalanddynamic
reactionscenariosofdifferentpermafrostsitesintheEuropeanAlps.
2. Projectpartnersandresearchactivities
Table 1 gives an overview on the study sites containing for each one its name, country, location,
elevation, studied landform and processes, research initiation, type of permafrost monitoring site
and the institution which has responsibly coordinated the documentation of the respective case
study. All persons involved in elaborating the case studies are kindly acknowledged and listed in
Table2.Informationontherelevanceofthecharacterofthedifferentpermafrostmonitoringsitesas
wellaslandformsandprocessesisgiveninChapter4.
30
PermafrostResponsetoClimateChange
Fig.2–Visualimpressionsof9ofthe13PermaNETstudysitesrelevantfortheassessmentofthermal
and dynamic reaction scenarios. The numbers in brackets refer to the numbers in Fig. 1. The study
sitesrangefromjustbelow2000ma.s.l.(studysiteHochreichart)toabout4000ma.s.l.(studysites
intheAiguilleduMidì).Allphotographsprovidedbytheauthors.
31
PermaNET–Permafrostresponsetoclimatechange
Table 1 – Overview of the study sites investigated in order to assess the thermal and dynamic reaction of
permafrost to climate change in the Alps within action 5.3 of the project PermaNET. The different types of
permafrost monitoring sites are: PFͲbedrock=Permafrost in bedrock (from nearͲvertical rockwalls to flat
morphologies);PFͲfine=PermafrostinfineͲgrainedmaterial(flatmorphology);PFͲcoarse=PermafrostincoarseͲ
grained and blocky material (scree slopes, rock glaciers; from slopes to rather flat morphologies). Project
partners and collaborators: ARPA VdA=Regional Agency for the Environmental Protection of Valle d'Aosta,
Aosta,Italy;ARPAV=EnvironmentProtectionRegionalAgencyofVeneto;UIBK=InstituteofGeology,University
of Innsbruck, Innsbruck, Austria; IGRS=Institute of Geography and Regional Science, University of Graz, Graz,
Austria; ZAMG=Central Institute for Meteorology and Geodynamics, Vienna, and Regional Office for Salzburg
andUpperAustria,Salzburg,Austria;IGAͲPACTE=InstitutdeGéographieAlpine,UniversityofGrenoble,France;
EDYTEM=EDYTEMLab,UniversitédeSavoie;UniPavia=EarthScienceDepartment,UniversityofPavia,Pavia,
Italy;Abenis=AbenisAlpinexpertGmbh/srl,Bozen/Bolzano,Italy.
Nameofstudysite
(codeseeFig.1)
Con.
Latitude
Longitude
Elevation
range/
max.
(ma.s.l.)
Hochreichart(1)
A
47°22’N
14°41’E
1920Ͳ2415
DösenValley(2)
A
46°59’N
13°17’E
2400Ͳ3000
rock glacier,
1995
rockwall
HoherSonnblick(3)
A
47°03’N
12°57’E
3105
bedrock,
detritus
2007
A
46°50’
11°01’
2360Ͳ2840
rockglacier
1938
PFͲcoarse
UIBK
F
45°56’N
06°24’E
2450Ͳ2630
rockglacier
1979
PFͲcoarse
IGAͲPACTE
F
44°59’N
06°10’E
2600Ͳ2800
rockglacier
2007
PFͲcoarse
IGAͲPACTE
F
45°53’N
06°53’E
3840
nearͲvertical
rockwalls
2005
PFͲbedrock
EDYTEM
F
45°50’N
06°52’E
3000Ͳ4000
2006
PFͲbedrock
EDYTEM
OuterHocheben
Cirque(4)
Combe
du
Laurichard(5)
Bellecombes(6)
Aiguille du Midì*
(Mont Blanc Massif)
(7)
MontBlancMassif
(othersitesas*)(8)
Cime Bianche Pass
(9)
ValdiGenova(10)
Vald’Amola(11)
I
45°55’N
07°41’E
3100
I
I
46°13’N
46°12’N
10°34’E
10°42’E
PizBoè(12)
I
46°30’N
Upper Sulden Valley
I
(13)
46°30’N
Main
studied
landform or
process
rock glacier,
rock wall,
detritus
ReͲ
search
initiaͲ
tion
Permafrost
monitoring
site
Coordinator’
sinstitution
2004
PFͲbedrock
PFͲcoarse
IGRS
2750Ͳ2860
2330Ͳ2480
nearͲvertical
rockwalls
bedrock,
detritus
rockglacier
rockglacier
2001
2001
11°50’E
2900Ͳ2950
rockglacier
2005
10°37’E
2600Ͳ3150
detritus
1992
32
2005
PFͲbedrock
PFͲfine
PFͲcoarse
PFͲbedrock
PFͲcoarse
PFͲbedrock
PFͲcoarse
PFͲcoarse
PFͲcoarse
PFͲcoarse
PFͲbedrock
PFͲcoarse
PFͲfine
IGRS
ZAMG
ARPAVdA
UniPavia
UniPavia
ARPAV
Abenis
Alpinexpert
PermafrostResponsetoClimateChange
Table2–PersonsinvolvedinelaboratingthecasestudiesofAction5.3andtheiraffiliations.
Name
Baroni,Carlo
Bodin,Xavier
Cagnati,Anselmo
Carollo,Federico
Coviello,Velio
Cremonese,
Edoardo
Crepaz,Andrea
Dall’Amico,Matteo
Defendi,Valentina
Deline,Philip
Casestudy
(Chapter)
UniversityofPisa(Italy)
3.11.,3.12.
UniversityJosephFourier,Grenoble(France)
3.6.
RegionalAgencyfortheEnvironmentalProtectionofVeneto(Italy)
3.13.
E.P.C.EuropeanProjectConsultingS.r.l.(Italy)
3.13.
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
3.8.
RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy) 3.8.,3.10.
Institution
RegionalAgencyfortheEnvironmentalProtectionofVeneto(Italy)
MountainͲeeringsrl(Italy)
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
Drenkelfluss,Anja
Galuppo,Anna
Gruber,Stephan
KellererͲPirklbauer,
Andreas
UniversityofBonn(Germany)
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
UniversityofZurich(Switzerland)
UniversityofGraz(Austria)
3.13.
3.11.,3.12.
3.13.
editor,
3.8.,
3.9.
3.8.
3.13.
3.8.
editor,3.2,3.3
Kemna,Andreas
Klee,Alexander
Krainer,Karl
Krautblatter,
Michael
Krysiecki,JeanͲ
Michel
LeRoux,Olivier
UniversityofBonn(Germany)
CentralInstituteforMeteorologyandGeodynamics(Austria)
UniversityofInnsbruck(Austria)
UniversityofBonn(Germany)
3.8.
3.4.
3.5.
3.8.
UniversityJosephFourier,Grenoble(France)
3.6.
Lieb,GerhardKarl
Lorier,Lionel
UniversityofGraz(Austria)
editor,3.2,3.3
Association pour le développement de la recherche sur les glissements de 3.7.
terrain(France)
Magnabosco,Laura
Magnin,Florence
Mair,Volkmar
Malet,Emmanuel
Marinoni,
Francesco
MorradiCella,
Umberto
Noetzli,Jeanette
Pogliotti,Paolo
RegioneVeneto,DirezioneGeologiaeGeorisorse,ServizioGeologico(Italy)
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
AutomousProvinceofBolzano(Italy)
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
Freelancer(Italy)
Association pour le développement de la recherche sur les glissements de 3.7.
terrain(France)
3.13.
3.8.
3.14.
3.8.
3.13.
RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy) 3.8.,3.10.
UniversityofZurich(Switzerland)
3.8.
RegionalAgencyfortheEnvironmentalProtectionoftheAostaValley(Italy) editor,
3.8.,
3.10.
Ravanel,Ludovic
NationalCenterforScientificResearchEDYTEM,Grenoble(France)
3.8.,3.9.
Riedl,Claudia
CentralInstituteforMeteorologyandGeodynamics(Austria)
3.4.
Rigon,Riccardo
UniversityofTrento(Italy)
3.11.,3.12.
Schöner,Wolfgang CentralInstituteforMeteorologyandGeodynamics(Austria)
editor,
3.6.,
3.7.
Seppi,Roberto
UniversityofPavia(Italy)
3.11.
Vallon,Michel
UniversityJosephFourier,Grenoble(France)
3.7.
Zampedri,Giorgio GeologicalSurvey,AutonomousProvinceofTrento(Italy)
3.11.,3.12.
Zischg,Andreas
AbenisAlpinexpertGmbH/srl(Italy)
3.14.
Zumiani,Matteo
Geologist(Italy)
3.11.,3.12.
33
PermaNET–Permafrostresponsetoclimatechange
3. Structureofthecasestudies
Inordertofacilitatethecomparisonbetweenthedifferentcasestudiesallofthemusemoreorless
thesamestructureasfollows:
x
Summary
x
Short introduction into the case study site and the relevant landform (in most cases with
detailedmapsandphotographs)
x
Methodology (in most cases a set of different methods has been used, see discussion in
Chapter4)
x
Recentthermaland/orgeomorphicevolutionoftherelevantlandform(s)(inmostcaseswith
graphs,forthecoveredtimespansseediscussioninChapter4)
x
Assumptionsonpossiblefuturethermal/geomorphicresponseofthislandformtopredicted
climatechange(takingintoaccounttheclimatescenariopresentedinChapter2)
x
Referencelist.
34
3.
CasestudiesintheEuropeanAlps
3.2
Hochreichart,EasternAustrianAlps
Citationreference
KellererͲPirklbauerA(2011).Chapter3.2:CasestudiesintheEuropeanAlps–Hochreichart,Eastern
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.35Ͳ44.
Authors
Coordination:AndreasKellererͲPirklbauer
Involvedprojectpartnersandcontributors:
Ͳ Institute of Geography and Regional Science, University of Graz, Austria (IGRS) – Andreas
KellererͲPirklbauer
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
35
PermaNET–CasestudiesintheEuropeanAlps
Summary
Knowledge regarding marginal permafrost zones in the European Alps is fairly limited. A
permafrost research project in the Seckauer Tauern, focusing particularly on the Mt.
HochreichartͲReichart Cirque area (47°22’N, 14°41’E), Austria, was initiated in 2004 by the
author.Since2006,theresearchactivitieswerecarriedoutwithintheprojectsALPCHANGEand
PermaNET. Based on geomorphic mapping, numerical permafrost modelling, multiͲannual
measurementsofthebottomtemperatureofthesnowcover(BTS),continuousmeasurementsof
groundsurface,neargroundsurfaceandairtemperaturesbyminiaturetemperaturedataloggers
(MTD), geoelectrics and optical snowͲcover monitoring by a remote digital camera (RDC) the
existence of permafrost was proven. Patches of permafrost are strongly related to elevation,
aspect,grainsizeofthesediments,andcharacteristicsofwintersnowcover.Therefore,thestudy
site is the most easterly evidence of existing permafrost found in the entire European Alps at
14°41’Einelevationsaslowas1900masl.Predictingclimatewarmingwillsubstantiallyinfluence
the permafrost distribution and geomorphic dynamics in the study area HochreichartͲReichart
Cirque.By2050,permafrostwillbealmostcompletelythawedapartfromfewhighͲelevatedsites
where the substrate material (coarseͲblocky material) and topoclimatic conditions (radiation,
snowcover)stillallowsmallpatchesofpermafrost.
36
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
Mountain permafrost is a widespread phenomenon in alpine regions in the European Alps. For
instance,some2000km²or4%oftheAustrianAlpsareunderlainbypermafrost(Lieb1998).Upto
recent times most research on permafrost issues in Austria focused on the central and highest
sectionoftheAustrianAlps.Bycontrast,knowledgeconcerningmarginalpermafrostzonesisfairly
limitedsofar.
ToincreaseknowledgeabouttheeasternmostlimitofpermafrostintheEuropeanAlps,aresearch
projectfocusingontheSeckauerTauernMountains(14°30’Eto15°00’E)andparticularlyontheMt.
Hochreichart area (47°22’N, 14°41’E) was initiated in 2004 by the author (Fig. 1). First permafrost
resultswerepublishedinKellererͲPirklbauer(2005).Theresearchactivitieswerecontinuedbetween
2006and2010withintheprojectALPCHANGEandsince2008withinPermaNET.
Fig.1–LocationofthestudyregionSeckauerTauernMountainsandthestudyareaMt.Hochreichart
TheSeckauerTauernMountainsaretheeasternmostmountainsoftheTauernRangewhichcovers
almost9,500km²inAustriaandItaly.TheSeckauerTauerhaveaspatialextentof626km²andits
highest peak is Mt. Geierhaupt reaching 2417 m asl (KellererͲPirklbauer 2008). Research in the
SeckauerTauernMountainsfocusesspatiallyonthesummitareaofMt.Hochreichart (2416masl)
andthenorthͲeastfacingReichartCirque.
The study area covers about 1 km² in total, ranging in elevation from about 1800 to 2416 m asl.
Bedrock is predominantly quartzite and gneiss. The Reichart Cirque is covered by a large relict
polymorphicrockglacierwithaverticalextentofc.450mrangingfromabout1500maslto1950m
aslattheuppermostpartoftherootingzone(Fig.2A).
Thehigherelevationsofthestudyareawereexposedtointensiveperiglacialweatheringduringthe
cold periods in the Pleistocene causing the formation of coarseͲgrained autochthonous blockfields
(mountainͲtopdetritus)andrectilinearslopeswithsolifluctionlandforms,partlywithmaterialsorting
byfrostaction(Fig2B).According toownairtemperature measurementsbetweenSept. 2008and
August2009,themeanannualairtemperature(MAAT)atthesummitat2416masl(AT1)isͲ1.4°C,in
thecirqueat1920masl(AT2)isabout+2.2°C,revealingameanlapserateof0.0072°C/m.
37
PermaNET–CasestudiesintheEuropeanAlps
Fig. 2 – (A) Mt. Hochreichart (2416 m asl) and Reichart Cirque with the uppermost part of a
polymorphic quasiͲrelict (i.e. contains small patches of permafrost) rock glacier. Locations of the
miniaturetemperaturedataloggers/MTDwheregroundsurfacetemperature(GST,blackdots)andair
temperature (AT, grey dots) are measured and the profile where geoelectrical measurements were
carried out in 2008 (blue and white line) are indicated. (B) Summit of Hochreichart with coarseͲ
grainedautochthonousblockfieldswithmaterialsortingbyfrostaction(notethevegetationpatchin
frontoftheperson).PhotographsbyA.KellererͲPirklbauer(A)22.09.2007and(B)22.08.2007.
Fig. 3 – The study area HochreichartͲReichart Cirque: The distribution of the modelled potential
discontinuous permafrost, areas of rock glacier depositis, location of air (AT) and ground surface
temperature(GST)measurementsites,andthelocationofthegeoelectricprofileareindicated.
38
PermafrostResponsetoClimateChange
2. Permafrostindicatorsandrecentthermalevolution
2.1Methods
Since2004asuiteofmethodshasbeenappliedsuchasgeomorphicmapping,numericalpermafrost
modelling, multiͲannual measurements of the bottom temperature of the snow cover (BTS),
continuousmeasurementsofgroundsurface,neargroundsurfaceandairtemperaturesbyminiature
temperaturedataloggers(MTD),geoelectricsandopticalsnowͲcovermonitoringbyaremotedigital
camera(RDC).
Thespatialdistributionofpotentialdiscontinuouspermafrostinthestudyareawasmodelledbyan
adaptation of the program PERMAKART (Keller 1992), using GIS ArcView and ArcInfo. Details and
resultsofthismodellingapproachwerepublishedinKellererͲPirklbauer(2005).
MTDswereusedatninelocationsduringdifferentperiods.Theresultsfromthreesites(Fig.1)with
groundsurfacetemperature(GST)measurementsloggedat1hintervalarepresentedhere.Theused
loggers are produced by GeoPrecision, Model MͲLog1 with PT1000 temperature sensors (accuracy
+/Ͳ0.05°C, range Ͳ40 to +100°C, calibration drift <0.01°C/yr). Data of continuous measurements of
groundsurfacetemperatureatthethreesitesGST1toGST3wereavailableforthe47Ͳmonthperiod
09.10.2006 to 21.09.2010. At site GST3 malfunction of the logger caused a data gap between
18.05.2007and12.08.2007.InordertoallowcomparisonbetweenthesitesaswellasallowingfullͲ
year data analysis, the three fullͲyear periods 01.11.2006Ͳ31.10.2007, 01.11.2007Ͳ31.10.2008 and
01.11.2008Ͳ31.10.2009,wereanalysed.AtGST3,onlythesecondandthirdyearwasconsidered.The
dataanalysisfocusedonfrostday(FD),iceday(ID),freezeͲthawday(FTD)andfrostͲfreeday(FFD).A
day got classified as FD, when the daily minimum temperature is below zero. If also the daily
maximum temperature is among the freezing point, the day got classified as ice day ID. The
differencebetweenicedaysandfrostdays,whichmeansalldayswithadailyminimumtemperature
below 0°C and a daily maximum above this limit, got classified as FTD. Finally, a day with positive
minimumtemperaturegotclassifiedasFFD.
BTSwasmeasuredatReichartCirqueannuallybetweenwinter2004and2009usingathermocouple
probePT100(1/3DINclassB)fixedtothebottomofa3mlongsteelrod(SystemKRONEIS,Vienna).
BTSisknowntobeagoodindicatoroftheoccurrenceorabsenceofpermafrost.ThemeasuredBTS
valuesindicate:BTS>Ͳ2°C:permafrostunlikely;BTSͲ2toͲ3°C:permafrostpossible;BTS<Ͳ3°C:
permafrostprobable(Haeberli1973).However,theinterpretationofmeasuredBTSvaluesshouldbe
madeverycarefullyandinterannualvariationatagivensitemightvarysubstantialfromoneyearto
thenext.
In order to verify the temperature data and to extend the spatial knowledge about permafrost
distribution beyond point information, a geoelectrical survey was carried out at the end of August
2008 by applying the electrical resistivity tomography (ERT) method along a 120 m long profile
coveringtheupperpartoftherootingzoneofa(moreͲorͲless)relictrockglacierandthetalusslope
above.ForthissurveythetwoͲdimensional(2D)electricalsurveyswasperformedusingtheWennerͲ
Alfaconfigurationwith2.5mspacingandanLGMͲLippmann4ͲPunktlighthpresistivityͲmeter.The
ERTmeasurementswerecarriedoutbyB.Kühnast(KNGeoelektrik)jointlywithE.Niesner(University
ofLeoben)(KellererͲPirklbauer&Kühnast2009).
Finally, a RDC system was set up at a nearby mountain (Feistererhorn 2081m asl.) to monitor the
snowcoverdynamicsinthecirqueandsummitareofMt.Hochreichart.ThecorepartsoftheRDC
system are a standard handͲheld digital camera (Nikon Coolpix), a remote control, a water proof
casingwithatransparentopening,a12V/25Ahbatteryandsolarpanelswithachargecontroller.
2.2Resultsoncurrentpermafrostdistribution
39
PermaNET–CasestudiesintheEuropeanAlps
Permafrostmodelling
Permafrostdistributionaccordingtothisthechosenmodellingapproachrevealedthatpermafrostis
verylikelyatnorthͲfacingaspectsathighestelevations,butnotoccurringataltitudesbelow2270m
asl.Accordingtothismodelresult,theentireReichartCirqueispermafrostfree(Fig.3).
Thermalregimebasedonminiaturetemperaturedatalogger
ResultsofthecontinuousmeasurementsofgroundsurfacetemperatureatthethreesitesGST1to
GST3 are shown in Fig. 4. The mean values for the three year period at the highest site (GST1, FD
235)forFDis15dayshighercomparedtothesite116mlowerinelevation(GST2,FD220).ForID,
thedifferenceismoresubstantialwith19days,whereasthenumberofFTDisslightlyhigheratthe
lowerofthetwosites.Thelowestofthethreesites(GST3)experiencessubstantiallylessFDbutonly
slightlylessFTDcomparedtoGST2.Regardinginterannualvariations,thenumberofFDatallthree
sitesisrelativelystable,whereasthenumberofIDaswellasofFTDvariesabitmore.
Fig.4–ThermalregimeatthethreesitesGST1toGST3betweenNov.2006andOctober2009.Numberoffrost
days(includingicedays),icedays,freezeͲthawdaysandfrostͲfree.Resultsofsingleyearsandthemeanforthe
entireperiodareshown.
Fig.5showsthemeanannualgroundsurfacetemperature(MAGST)aswellastheelevationofthe
computedͲzerodegreeisothermbasedonalapserateof0.0065°C/m.Thisgraphclearlydepictsthat
theMAGSTvaluesatsiteGST1andGST2areallnegativeindicatingpermafrost,whereasatthelow
elevation site GST3 the temperature at the ground surface is at around +2°C. However, GST3 is
locatedoncoarseͲgrainedblockymaterialintherootingzoneofarockglacier.Duetothethermal
behaviourofsoilmaterial(inparticularcoarseͲgrainedblockymaterialwithopenvoidsinbetween),
thetemperatureatthegroundsurface(i.e.MAGST)iswarmercomparedtothetemperatureatthe
topofpermafrost(TTOP), possiblyuptoseveraldegrees(“thermaloffset”;Smithand Riseborough
2002). Therefore, despite the fact that positive MAGST are measured at the surface, permafrost
mightstillexistintheground.
The diagram showing the computedͲzero degree isotherm for the three sites indicates that in
general, the lowest computed zeroͲdegree isotherm was calculated for site GST3, whereas the
highestcomputedzeroͲdegreeisothermwascalculatedforthehighestsiteGST1.Explanationforthis
isthedifferentbufferingeffectofthewintersnowcover.AtsiteGST1,snowcoverisofsubstantially
less importance (summit site, small local depression) compared to site GST3 (footͲslope position,
rootingzoneofrockglacierwithmoreefficientsnowaccumulationandlonglyingsnowcover).This
clearly highlights the importance of snow influencing the thermal regime of the ground (cf. “nival
offset”;SmithandRiseborough2002)
40
PermafrostResponsetoClimateChange
Fig.5 –Meanannualgroundsurfacetemperature(MAGST)andcomputedzeroͲdegreeisotherm(usingalapse
rateof0.0065°C/m)atthethreesites.Resultsofsingleyearsandtheentireperiodareshown.
Figure 6 shows the results of two BTSͲcampaigns in the Reichart cirque. The maps show that the
general pattern is the same, but BTS values in 2008 were cooler. In 2008 more measurement
locations were within the possible (Ͳ2 to Ͳ3°C) and probable (< Ͳ3°C) permafrost classes. BTS
measurementsindicatethatpatchypermafrostprobablyexistsinthecirqueattwodifferenttypesof
topographicalpositions:(i)anorthtonorthͲeastfacingfootslope,and(ii)atthefootofasteepnorth
to northͲwest facing rockface at elevations as low as 1850 m asl. According to this method, the
uppermostpartoftherockglacierincludingtherootzonearepresumablyunderlainbypatchesof
permafrost.
Fig. 6 – BTS measurements in late winter 2007 and 2008 in the Reichart Cirque. The measurements in 2008
indicate substantial cooler ground temperatures. Note the pronounced morphology of the relict rock glacier
(Orthophotographkindlyprovidedby©GISSteiermark).
Geoelectricalmeasurements
TheERTresults(Fig.7)indicateanactivelayerof2to4munderlainbyapermafrostbodyalong3/4
oftheentireprofilewithresistivityvaluesbetween50to100kOhm.mandextendingtoadepthof
10to15m.Thepermafrostbodyissubstantiallythickeratthelowerpartoftheprofile(rockglacier;
first50mofprofile)comparedtomostoftheupperpart(talusslope).Focusingonthetalusslope,
thepermafrostbodyisthickestonthecentralsectionoftheprofile(~5Ͳ6mthickness).Incontrast,at
41
PermaNET–CasestudiesintheEuropeanAlps
thelowerpartofthetalusslopethepermafrostbodyismostlikelyverythin(lessthan1m)whereas
attheuppermostpartpermafrostisabsent.
Fig.7 –Electricalresistivitytomography(ERT)ofthe120mlongprofilemeasuredintheReichartCirque(see
Fig.2forlocation).MeasurementscarriedoutbyKNGeoelektrik
2.3Summaryofcurrentpermafrostdistribution
Based on the permafrost research carried out so far, one can conclude that the existence of
permafrostisproveninthestudyareaMt.Hochreichart.Themountainpermafrostoccursaspatches
inthelowerpartsasforinstanceintherootingzoneoftheofapseudoͲrelictrockglacierwherethe
substrat consists of coarseͲgrained sediments. This cooling effect of coarse blocks has been
recognised since decades (cf. Gruber & Hoelzle 2008).In higher elevations, permafrost is more
widespread affecting the entire summit area. MAGST near 0°C at elevations higher ca. 2300 m asl
indicatethatpermafrostisthinandingeneralwarm.Theredistributionofsnowandcharacteristics
of the winter snow cover as well as the type of substrat (bedrock, fine material, coarseͲgrained
blockymaterial)arethedominantlocalfactorforpresenceorabsenceofpermafrost.
Fig.8depictsthesnowcoversituationinthestudyareaMt.HochreichartinNovember2006,2007,
2008and2009basedontheownRDCsystem.Thesefourimagesexemplarilyshowthatsnowcover
variessubstantiallyfromyeartoyearduringsimilarperiods.Earlysnowfallinautumnproducinga
protectingsnowcoverinhibitsgroundcooling.Incontrast,longlyingsnow(e.g.footslopepositionin
cirque)inhibitsgroundwarminginspring.Regardingsubstrat,siteswithratherthicklayers(several
meters) of coarseͲgrained blocky material in the uppermost part of the Reichart Cirque (talus and
rooting zone of the rock glacier) are more likely underlain by permafrost as shown by the ERT
measurements.Summarising,thissiteisthemosteasterlyevidenceofexistingpermafrostfoundin
theentireEuropeanAlpsat14°41’Eatelevationsaslowas1900masl.
42
PermafrostResponsetoClimateChange
Fig.8–SnowcoverdistributioninthecirqueandinthesummitareaofMt.HochreichartinNovember2006,
2007,2008and2009.cf.Fig.2.
3. Possiblefuturethermalresponsetopredictedclimatechange
As presented above, permafrost in the study area HochreichartͲReichart Cirque is restricted to the
highestelevationsandtolocations,wherethesnowcoverregimeand/orthecharacteristicsofthe
substrat material is favourable for permafrost existence. Climate change with the predicted
temperatureincreasefortheGreaterAlpineRegion(GAR)byusingtherelativelyoptimisticCLMA1B
scenarioindicatesatemperatureincreaseofaround2°Cby2050(seeChapter2.)
The estimates for frost day (FD), ice day (ID) and (FTD) for the periods 1961Ͳ1990 and 2021Ͳ2050
basedonairtemperaturedatarevealforthestudyareaHochreichartͲReichartCirquethefollowing
results:ThenumberofFDwilldecreaseby13to14daysperyear.Forthesummitarea,thiswould
mean207Ͳ227FDinsteadof221Ͳ240FDhenceareductionofFDbyupto6.3%.ThenumberofIDwill
decrease also by some 13 to 14 days per year, which means 127Ͳ147 ID instead of 141Ͳ160. In
relativenumber,thisisalmost10%.Incontrast,thenumberofFTDwillpresumablyremainmoreor
lessatthesamelevelwithasmallincreaseby0.1to2daysperyear.
ThepredictedwarmingbasedontheCLMA1BscenariocausingthemodelledchangesinFD,IDand
FTDwillseverelyinfluencethepermafrostdistributionandgeomorphicdynamicsinthestudyarea
HochreichartͲReichart Cirque. By 2050, permafrost in the study area will be restricted to few high
elevated locations in the summit area where the substrat and the snow cover conditions will still
allow the existence of permafrost. In contrast, permafrost in the cirque will be completely thawed
despitethefactoflargeareasofcoarseͲgrainedsediments.
43
PermaNET–CasestudiesintheEuropeanAlps
Acknowledgements. – This study was partly carried out within the framework of the projects
ALPCHANGE,financedbytheAustrianScienceFund(FWF)throughprojectno.FWFP18304ͲN10,and
PermaNET.ThePermaNETprojectispartoftheEuropeanTerritorialCooperationandcoͲfundedby
the European Regional Development Fund (ERDF) in the scope of the Alpine Space Programme
www.alpinespace.eu
References:
Gruber S. & Hoelzle M., 2008: The cooling effect of coarse blocks revisited: a modeling study of a
purely conductive mechanism. Proceedings of the Ninth International Conference on
Permafrost(NICOP),UniversityofAlaska,Fairbanks,June29–July3,2008,557Ͳ561.
Haeberli W., 1973: Die BasisͲTemperatur der winterlichen Schneedecke als möglicher Indikator für
die Verbreitung von Permafrost in den Alpen. Zeitschrift für Gletscherkunde und
Glazialgeologie,9,221Ͳ227.
KellerF.,1992:AutomatedmappingofmountainpermafrostusingtheprogramPERMAKARTwithin
the Geographical Information System ARC/INFO. Permafrost and Periglacial Processes, 3,
133Ͳ138.
KellererͲPirklbauerA.,2005:Alpinepermafrostoccurrenceatitsspatiallimits:Firstresultsfromthe
easternmarginoftheEuropeanAlps,Austria.NorskGeografiskTidsskriftͲNorwegianJournal
ofGeography,59,184Ͳ193.
KellererͲPirklbauerA.,2008:Aspectsofglacial,paraglacialandperiglacialprocessesandlandformsof
theTauernRange,Austria.UnpublishedPhDͲThesis,UniversityofGraz,200p.
KellererͲPirklbauer A. & Kühnast B., 2009: Permafrost at its limits: The most easterly evidence of
existing permafrost in the European Alps as indicated by ground temperature and
geoelectricalmeasurements.GeophysicalResearchAbstracts11:EGU2009Ͳ2779.
Lieb G.K., 1998: HighͲmountain permafrost in the Austrian Alps (Europe). Proceedings of the 7th
International Permafrost Conference (Yellowknife, 23–27 June 1998), Collection Nordicana
57,663–668.Centred’étudesnordiques,UniversitéLaval,Québec.
Smith M.W. & Riseborough D.W., 2002: Climate and the limits of permafrost: a zonal analysis.
PermafrostandPeriglacialProcesses,13,1Ͳ15.
44
3.
CasestudiesintheEuropeanAlps
3.3
DösenValley,CentralAustrianAlps
Citationreference
KellererͲPirklbauerA(2011).Chapter3.3:CasestudiesintheEuropeanAlps–DösenValley,Central
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.45Ͳ58.
Authors
Coordination:AndreasKellererͲPirklbauer
Involvedprojectpartnersandcontributors:
Ͳ Institute of Geography and Regional Science, University of Graz, Austria (IGRS) – Andreas
KellererͲPirklbauer
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
45
PermaNET–CasestudiesintheEuropeanAlps
Summary
Permafrost research in the Dösen Valley (46°59’N and 13°17’E), Hohe Tauern Range, Central
Austriawasinitiatedinthe1990s.Sincethen,anumberofdifferentmethodshavebeenapplied
to understand permafrost distribution and rock glacier dynamics. Results show that at present
permafrost exists at permafrost favourable sites (northͲexposed, well sheltered, coarseͲblocky
material) at elevations down to 2200 m asl. In contrast, on southͲexposed slopes covered by
coarseͲblockymaterialthelowerlimitisataround2600masl.Localconditionssuchassubstrate
material(i.e.fine/coarsesediments,thick/thinsediments,bedrock)andtopoclimaticconditions
(radiation sheltered, timing and characteristics of snow cover) alter the general pattern of
decreasing ground surface temperature with increasing elevation substantially and makes the
permafrostdistributionpatterninthestudyareacomplex.Rockglaciervelocitiesseemtoreact
quickerafteracoolperiodwithdeceleration.Incontrast,rockglaciersseemtoneedmoretime
to react after warmer periods with movement acceleration indicating the inertia of the rock
glaciersystemtowardsgroundwarmingandvelocitychanges.By2050,southͲfacingslopesnot
coveredbycoarseͲblockymaterialwillbepermafrostfree.OnlythehighestnorthͲfacingslopes
willstillbeinfluencedbywidespreadpermafrost.Theroleofsubstratematerialandsnowcover
dynamics will be even more important for the remaining permafrost than today. Temperature
increasewilleventuallyleadtoinactivationofallpresentlyactiverockglaciersinthestudyarea.
46
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
PermafrostresearchintheHoheTauernRangeinCentralAustriawasinitiatedinthe1990s.Oneof
themainstudyareasforpermafrostresearchistheDösenValleynearMallnitz(Fig.1A).Sincethen,
differentmethodshavebeenappliedinordertounderstandpermafrostdistributionandrockglacier
dynamicsinthisvalley(Table1).Presentpermafrostresearchinthisstudyareaiscarriedoutwithin
the framework of the projects ALPCHANGE (2006Ͳ2010), PermaNET (2008Ͳ2011) and permAfrost
(2010Ͳ2012)byresearchersfromtheUniversityofGraz,theGrazUniversityofTechnologyaswellas
theUniversityofLeoben.
Table1–AppliedmethodsandpublicationsatthestudyareaDösenValley
Method
Geodeticsurveys
Photogrammetricsurveys
Geophysical campaigns (seismics, geomagnetics
andgeoradar/GPR)
Geomorphologicalmappingandobservations
Meteorologicalmonitoring
Monitoring of snow cover dynamics in the
rootingzonebyautomaticdigitalcameras
Groundtemperaturemonitoring
NearͲsurfacegroundtemperaturemonitoring
Relativedatingofrockglaciersurface
initiated/carriedout
1995
1954
Publications
Buck&Kaufmann2008
Delaloyeetal.2008
1994
Kaufmann & Ladstädter 2007 Kaufmann
etal.2007
1994
2006
2006
KellererͲPirklbauer2008
KellererͲPirklbaueretal.2008a,2008b
1995
(continuoussince2006)
1995
(continuoussince2006)
2007
Kenyi&Kaufmann2003
Kienast&Kaufmann2004
Lieb1991,1996,1998
Schmöller&Fruhwirth1996
The study area is situated in the Ankogel Mountains at the inner part of the glacially shaped, EͲW
trendingDösenValleyataboutN46°59´andE13°17.Theelevationofthestudyarearangesbetween
2270maslatthecirquethresholdneartheArthurͲvonͲSchmidHuttoslightlymorethan3000masl
atthenearbySäuleckpeak.Thispartofthevalleyischaracterisedbyanumberofrockglaciersand
distinctterminalmorainesinrelatively flatparts,acirquefloorwithatarn lake,slopescoveredby
coarse debris and steep rock faces partly acting as debris supply areas for the rock glaciers.
Geologically, the study area is located within the central gneiss complex of the Hochalm/Ankogel
area with predominantly westͲdipping biotite gneiss (Lieb 1996). (Fig. 1B). The moraines were
presumablyformedduringtheEgesenͲmaximumadvanceandarethusofearlyYoungerDryas(YD)
age(Lieb1996).InAustria,theearlyYDis10BeͲdatedtoaround12.3–12.4ka(Kerschner&IvyͲOchs
2007).Atpresent,onlysomeperennialsnowpatchesarefoundinthestudyarea.
TheninerockglaciersintheDösenValleydepictedinFig.1Bpredominantlyconsistofgraniticgneiss
(Kaufmannetal.2007)andwereformedafterdeglaciationintheLateglacialandHoloceneperiod.
Accordingtothe“RockGlacierInventoryofCentralandEasternAustria”(Liebetal.2010,KellererͲ
Pirklbaueretal.2010),threeoftheserockglaciers(mo236,mo239.1,mo239.2)areconsideredtobe
relictandsixareregardedasintactstillcontainingpermafrost(mo237,mo237.1,mo238,mo238.1,
mo238.2, mo239). Previous permafrost research – including velocity measurements – focused
particularlyontherockglaciermo238(fordetailsseeLieb1996orKaufmannetal.2007).Thisrock
glacierischaracterisedbyanaltitudinalrangeof2355Ͳ2650masl,alengthof950m,awidthof250
m and an area of 0.19 km². The rock glacier is an active monomorphic tongueͲshaped rock glacier
situatedattheendoftheinnerDoesenvalleywithpresentmeansurfacevelocityratesofaround15Ͳ
25cmperyear(Fig.2).
47
PermaNET–CasestudiesintheEuropeanAlps
According to air temperature measurements by the own meteorological station located at the
surface of rock glacier mo238 (for location see Fig. 1) in the 4Ͳyears period September 2006 to
August 2010, the mean annual air temperature (MAAT) at the 2603 m asl is Ͳ1.7°C. The coldest
monthisJanuarywithamonthlyvalueofuptoͲ11.8°CwhereasthewarmestmonthisAugustwitha
monthlymeanvalueofupto7.8°C.
Fig. 1 – Study area Dösen Valley and its location within Austria. The distribution of rock glaciers, terminal
moraines of Late Glacial age (Younger Dryas), modelled potential discontinuous permafrost, location of the
meteorological station (MS) as well as the location of six miniature temperature datalogger (MTD) used for
ground surface temperature (GST) measurements are indicated. Code of the rock glacier is according to the
“RockGlacierInventoryofCentralandEasternAustria”(Liebetal.2010,KellererͲPirklbaueretal.2010).
Fig.2–ThestudyareaDösenValleywithfourintactrockglaciers:(A)viewtowardsE,(B)viewtowardsSE.
Note the widespread steep rock faces acting as debris supply areas, the perennial snow fields, the flowing
structureoftherockglaciersandwidespreadvegetation(indicatorforabsenceofalpinepermafrost).Locations
ofthesixminiaturetemperaturedataloggers/MTDwheregroundsurfacetemperature(GST)ismeasuredand
the site of the meteorological station (MS) are indicated. Code of the rock glacier is according to the “Rock
GlacierInventoryofCentralandEasternAustria”(Liebetal.2010,KellererͲPirklbaueretal.2010).Photographs
byA.KellererͲPirklbauer.
48
PermafrostResponsetoClimateChange
In this paper, the present situation and the evolution of the ground surface temperature in the
recentpast(2006Ͳ2010)anditssignificanceforpermafrostdistributionarehighlighted.Furthermore,
theresultsoftherockglaciermonitoringprogramfortheperiod1954to2010anditsrelationshipto
climaticconditionsandclimatechangearediscussed.
2. Permafrostindicatorsandrecentthermalevolution
2.1Methods
Since1994asuiteofmethodshasbeenappliedaslistedaboveinTable1.Inthispaper,resultsbased
onnumericalpermafrostmodelling,climatemonitoringbyusingameteorologicalstationaswellas
continuous measurements of ground surface temperature by using miniature temperature
dataloggers(MTD)andphotogrammetricandgeodeticrockglacierdisplacementmeasurementsare
presented.
Thespatialdistributionofpotentialdiscontinuouspermafrostinthestudyareawasmodelledbyan
adaptationoftheprogramPERMAKART(Keller1992)usingGISArcViewandArcInfo.Forthissimple
modellingapproach,theempiricalvaluesofthelowerlimitofdiscontinuouspermafrostforcentral
Austriawereused(Lieb1998).
Themeteorologicalstationhasbeeninstalledin2006atonelargeblockonthesurfaceoftherock
glaciermo238withintheALPCHANGEproject.Atthisstation,climatedataincludingairtemperature,
airhumidity,windspeed,winddirectionandglobalradiationarecontinuouslyloggedanddataare
availablefortheperiod01.09.2006to17.08.2010.
MTDs were used at a total of 11 locations during different periods. The results from six sites with
groundsurfacetemperature(GST)measurementsloggedat1hintervalarepresentedhere(Figs.1&
2).TheusedloggersareproducedbyGeoPrecision,ModelMͲLog1withPT1000temperaturesensors
(accuracy +/Ͳ0.05°C, range Ͳ40 to +100°C, calibration drift <0.01°C/yr). At each of the six sites, the
temperaturesensorisshelteredfromdirectsolarradiationbyaplatyrock.SitesGST1andGST2are
locatedoncoarseͲblockyslopes.GST2islocatedbetweenalargeboulderandbedrock.
All three sites form a vertical profile on southͲfacing slopes. In contrast, sites GST4 to GST6 are
locatedonthesurfaceofthemainactiverockglacierinthevalley(mo238)andfromaverticalprofile
on northͲfacing slopes. Data of continuous measurements of ground surface temperature at the
threesitesGST1ͲGST4andGST6wereavailableforthec.48Ͳmonthperiod01.09.2006to17.08.2010.
AtsiteGST5thetimeseriesendson05.09.2009.Toallowcomparisonbetweenthesixsitesaswellas
to allow fullͲyear data analysis, the four fullͲyear periods 01.09.2006Ͳ31.08.2007, 01.09.2007Ͳ
31.08.2008, 01.09.2008Ͳ31.08.2009 and 01.09.2009Ͳ17.08.2010 were analysed. Furthermore, the
zeroͲdegree isotherm was computed for each site using a vertical temperature gradient of
0.0065°C/m.Table2summariseskeyparametersofthesixGSTsites.
Temperaturedata(airandground)analysesfocusedonfrostday(FD),iceday(ID),freezeͲthawday
(FTD) and frostͲfree day (FFD). A day got classified as FD, when the daily minimum temperature is
belowzero.Ifalsothedailymaximumtemperatureisamongthefreezingpoint,thedaygotclassified
as ice day ID. The difference between ice days and frost days, which means all days with a daily
minimumtemperaturebelow0°Candadailymaximumabovethislimit,gotclassifiedasFTD.Finally,
adaywithpositiveminimumtemperaturegotclassifiedasFFD.
49
PermaNET–CasestudiesintheEuropeanAlps
Table 2 – Summary of the sites where ground surface temperature (GST) is monitored by using miniature
temperature dataloggers (MTD). Location of the GSTͲsites in indicated in Figs. 1 and 2. The elevation of the
computed zeroͲdegree isotherm was computed by using a vertical temperature gradient of 0.0065°C/m.
MAGST=meanannualgroundsurfacetemperature.
GSTͲsite
Exposition
Elevation
Dataperiod
(masl)
MAGST(°C)
Computed
zeroͲdegree
isotherm
(masl)
GST1
South
2489
4years:1.09.2006to17.08.2010
2.0
2797
GST2
South
2586
4years:1.09.2006to17.08.2010
1.2
2771
GST3
South
3002
4years:1.09.2006to17.08.2010
Ͳ2.6
2602
GST4
North
2626
4years:1.09.2006to17.08.2010
Ͳ0.9
2488
GST5
North
2501
3years:1.09.2006to05.09.2009
Ͳ1.5
2270
GST6
North
2407
4years:1.09.2006to17.08.2010
Ͳ1.3
2207
Surface displacement measurements of the rock glacier mo238 is carried out since 1954 by using
aerialphotogrammetryandsince1995byusingterrestrialgeodeticsurvey(Kaufmann&Ladstädter
2007,Kaufmannetal.2007).Thegeodeticmeasurementsusingatotalstationareannuallycarried
out in the middle of August following a proven scheme. Since 1995, the measurements were
repeatedapartfrom2003duetolackoffunding.TheannualcampaignsareledbyV.Kaufmann,TU
Graz. In addition to the geodetic measurements satellite based radar interferometry (Kenyi &
Kaufmann 2003) and photogrammetric displacement measurements based on aerial photographs
(1954,1969,1975,1983,1993,1997and1998)werecarriedout(Kaufmannetal.2007,Kaufmann&
Ladstädter2007)previously.
Finally,aRDCsystemwassetupinSeptember2006inordertomonitorthesnowcoverdynamicsat
therootingzoneoftherockglaciermo238.ThecorepartsoftheRDCsystemareastandardhandͲ
held digital camera (Nikon Coolpix), a remote control, a water proof casing with a transparent
opening,a12V/25Ahbatteryandsolarpanelswithachargecontroller.
2.2Resultsoncurrentpermafrostdistribution
Permafrostmodelling
The lower limit of potential discontinuous permafrost according to the chosen regional permafrost
modellingapproachindicatespermafrostonslopesbetween2500masl(northͲfacing)and2900m
asl.(southͲfacing)andonfootslopepositionsbetween2410masl(northͲfacing)and2690m(southͲ
facing).Themodellingresultsshowthatonlythelargeintactrockglaciermo238aswellasthetwo
smaller ones slightly to the west (mo238.1 and mo238.1) as well as the southͲfacing rock glacier
mo237.1arepredominantlyinpermafrostareaswhichisinaccordancetothefreshappearanceof
thefourrockglaciers(Fig.2).
Airtemperatureregimebasedonthemeteorologicalstation
Themeteorologicalstationislocatedat2603maslintheupperpartoftherockglacier(Figs.1&2).
Results from this station show, that the number of frost days (FD), ice days (ID), freezeͲthaw days
(FTD)andfrostͲfreedays(FFD)wasrelativelystableinthe4yearperiod2006to2010(Fig.3).The
meanvalueofFDis246meaningthatduring2/3oftheyearfrostoccursat2600masl.inthestudy
area. In contrast, the mean annual air temperature values indicate a substantially warmer year
50
PermafrostResponsetoClimateChange
2006/07,twocomparableyears2007/08and2008/09andasubstantiallycooleryear2009/10(Fig.3)
yieldingameanvalueofͲ1.7°C.TheelevationofthezeroͲdegreeisothermis2340masl.ifusinga
verticallapserateof0.0065°C/m.
Fig.3–Airtemperatureregimeatthemeteorologicalstationattherockglaciermo238.(A)Numberoffrost
days(includingicedays),icedays,freezeͲthawdaysandfrostͲfree;(B)meanannualairtemperature(MAAT);
bothforthesingleyearsandthemeanoftheentire4Ͳyearsperiod.
Groundthermalregimebasedonminiaturetemperaturedatalogger
ResultsofthecontinuousmeasurementsofgroundsurfacetemperatureatthesixsitesGST1toGST6
areshowninFigs.4and5.Fig.4showsthenumberoffrostdays(includingicedays),icedays,freezeͲ
thawdaysandfrostͲfreedays.Ingeneral,thelowestvaluesinFDandIDweremeasuredinwinter
2006/07. In contrast, the highest values of FTD were measured generally in winter 2006/07 apart
fromthesnowrichsiteGST5.Atallsixsites,thenumberofFFDwasagainhighestinwinter2006/07,
atsiteGST1theFFDvaluewasevenhigherthantheFDvalue.
ThemeanvalueofFDislowestatthesouthexposedsiteGST1withonly198days,followedbyGST2
with208days.Incontrast,atsiteGST3at3000masl,themeanvalueofFDdaysisalmost270.The
FDvalueforthenorthexposedsitesGST4toGST6isquitesimilaratallthreesiteswith237to245.
Regardinginterannualvariation,thenumberofFDduringthefouryearperiodvariedonlyby15days
betweenthehighestandcoldestsiteGST3.Incontrast,atsouthexposedandwarmersiteGST1the
numberofFDvariedduringthesameperiodby60days(168FDin2006/07vs.228FDin2007/08).
Considering the fact that the winter 2006/07 was exceptionally warm and the winter 2007/08 was
relatively“normal”,these resultssupposethatpermafrostsitesatlowerlocationinthestudyarea
DösenValleyaremoresusceptibletoclimatewarming.
Regardingicedays,thelowestIDvaluesareagainfoundatthesouthfacingsitesGST1andGST2with
about 170 days. The coldest site with the highest number of ID is site GST5 with 234 days. This
maximuminIDatthissiteisattributedtolocaltopoclimaticconditions(smalldepressiononnorth
facing slope favouring ground cooling) and long snow cover duration (delay in ground warming in
springtomidsummer).SimilarIDvaluesarefoundatthehighestsiteGST3andthetwonorthfacing
sites GST4 and GST6. The interannual variation of the number of ID during the four year
measurementperiodvariedsubstantiallyby36(GST4)to73days(GST1).
ThemeanvalueofthefreezeͲthawdaysisgenerallylowrangingfrombetween11atthesnowrich
siteGST5to37atthewarmsiteGST2,but50atthehighestsiteGST3.AtsiteGST5,theFTDvalue
was even only five in the winter 2007/08 related to the longͲlasting snow cover at this site. In
contrast, at site GST3 the number of FTD value reached 70 in the warm winter 2006/07. The
differences in the number of FTD at the sites alsoindicate that frost weathering caused by freezeͲ
51
PermaNET–CasestudiesintheEuropeanAlps
thawactionisimportantatthesouthͲexposedsitesGST1,GST2andinparticularGST3.Incontrast,at
thecoolerandsnowrichersitesthisweatheringprocessislessactiveatpresentclimateconditions.
Finally,frostͲfreedaysishighestatthewarmsitesGST1andGST2,comparableatthethreenorthͲ
exposedsitesGST4toGST6andsubstantiallylowestatsiteGST3.
Fig.4–GroundthermalRegimeatthesixsitesGST1toGST6betweenSeptember2006andAugust2010with
numberoffrostdays(includingicedays),icedays,freezeͲthawdaysandfrostͲfreedays.Resultsofsingleyears
andthemeanfortheentireperiodareshown.
Fig.5showsthemeanannualgroundsurfacetemperature(MAGST)aswellastheelevationofthe
computedͲzero degree isotherm based on a lapse rate of 0.0065°C/m for all six sites. Results are
shownforthesinglemeasurementyearsbetween2006and2010aswellasthemeanoftheentire
period. Results show that the northͲfacing slopes are cooler than the southͲfacing slopes at
comparableelevation.OnthesouthͲexposedslopes,theverticaltemperaturegradientforthefour
yearperiodis0.0082°C/m(betweenGST1undGST2)und0.0091°C/m(betweenGST2undGST3).In
contrast, on the northͲexposed slopes the situation is more complex due to local topoclimatic
conditions also influencing the characteristics of the winter snow cover (duration, thickness). A
negativegradientofͲ0.0048°C/mwascalculatedbetweenthesitesGST4andGST5,whereasaslight
positivegradientof0.0021°C/mwascalculatedbetweenthesitesGST5andGST6
Fig.5clearlydepictsthattheMAGSTatsitesGST1andGST2arepositivewithmeanvaluesof+1.2°C
(GST2) to +2.0°C (GST1) indicating absence of permafrost. However, site GST1 is located on blocky
material.Duetothethermalbehaviourofsoilmaterial(inparticularcoarseͲgrainedblockymaterial
with open voids in between; Gruber & Hoelzle 2008), the temperature at the ground surface (i.e.
MAGST) is warmer compared to the temperature at the top of permafrost (TTOP), possibly up to
several degrees (“thermal offset”; Smith and Riseborough 2002). Therefore, despite the fact that
positiveMAGSTaremeasuredatthesurface,permafrostmightstillexistinthegroundatoraround
thesiteGST1.Incontrast,theMAGSTvaluesattheotherfoursitesGST3toGST6areclearlynegative
52
PermafrostResponsetoClimateChange
(apartfrom2006/07atsiteGST6)withmeanvaluesofͲ0.9°CatsiteGST4toͲ2.6°Catthe3000ͲmͲ
siteGST3indicatingatthesefoursitespresenceofpermafrost.
Fig.5–Meanannualgroundsurfacetemperature(MAGST)andcomputedzeroͲdegreeisotherm(usingalapse
rateof0.0065°C/m)atthesixsitesGST1toGST6.Resultsofsingleyearsandthemeanfortheentireperiodare
shown.TheelevationrangeofthecomputedzeroͲdegreeisothermduringthefouryearsisindicated.
ThediagramshowingthecomputedͲzerodegreeisothermforthesixsitesindicatesthatthelowest
computedzeroͲdegreeisothermwascalculatedforthenorthͲfacingandlowelevatedsiteGST6with
a mean value of 2207 m asl. In contrast, the highest computed zeroͲdegree isotherms were
calculatedforthetwosouthͲfacingsitesGST1(2797masl)andGST2(2771 masl).Explanationfor
thisisthelocaltopoclimaticconditionandthebufferingeffectofthewintersnowcoveratagiven
site. At sites GST1, GST2, GST3 and GST6) snow cover is of minor importance (wind exposed sites
with little/minor snow cover) compared to sites GST4 and GST5 (footͲslope position with more
efficientsnowaccumulationandlonglyingsnowcover).Thisalsohighlightstheimportanceofsnow
influencingthethermalregimeoftheground(“nivaloffset”;SmithandRiseborough2002).Basedon
thecalculations,thezerodegreeisothermatthegroundsurfaceonnorthͲexposedslopesislocated
between about 2200 and 2500 m asl, on southͲfacing slopes between 2600 and 2800 m asl. The
computedͲzero degree isotherm varied during the four years between 177 m (GST4) and 472 m
(GST6) indicating substantial interannual changes. Single years such as the warm winter 2006/07
causeasubstantiallyincreaseofthisisothermby80to260m.
Summarising, one might expect permafrost in the study area on northͲexposed slopes covered by
coarseͲblocky material at elevations of 2200Ͳ2300 m asl, on southͲexposed slopes at 2600Ͳ2750 m
asl.
Rockglacierkinematic
Active rock glaciers are creeping phenomena of continuous or discontinuous permafrost. Their
movement mode is strongly related to climatic conditions and as a consequence to ground
temperatures(Kääbetal.2007).Fig.6depictstheevolutionofthemeanannualhorizontalsurface
velocity at the Dösen rock glacier mo238 between 1954 and 2010 based on geodetic and
photogrammetric measurements. Note that the mean annual values in the period before 1995 are
generally lower compared to the years after 1995 indicating generally lower displacement rates in
theperiod1954to1995.However,singleyearswithdisplacementratescomparabletothevaluesof
53
PermaNET–CasestudiesintheEuropeanAlps
the postͲ1995 period are conceivable. Furthermore, note the maximum in the movement rates
between 2002 and 2004, the following deceleration until 2008 followed by a remarkable new
acceleration during the last two measurement yeas. This movement pattern over the last 1.5
decadescorrelateswithothermonitoredrockglaciersintheHoheTauernRange(KellererͲPirklbauer
& Lieb 2011) and in the entire Alpine Arc (Delaloye et al. 2008). This circumstance confirms the
assumption that climatic conditions and changes in the European Alps are the dominant steering
factorsforrockglaciermovement.
Fig.6–Changeofmeanannualhorizontalsurfacevelocity(cmaͲ1)attheDösenrockglaciermo238between
1954and2010basedongeodeticandphotogrammetricmeasurements.Meanof11measurementpoints(Pt.
10Ͳ17,21Ͳ23).DatasourceKaufmannetal.(2007)andunpublisheddata.
Relationshipbetweenrockglacierkinematicandclimate
Theownmeteorologicalstationattherockglaciermo238wasusedtocollectairtemperaturedata
fortheperiodOctober2006toAugust2010.Meanmonthlyairtemperaturedatawerecalculatedfor
theperiodJanuary1990toSeptember2006fortheDösensitebyapplyingcorrelationanalysiswith
theairtemperaturedatafromthemeteorologicalobservatorySonnblick,about24kmWNWofthe
DösenValley.Fig.7depictstherelationshipbetweenthegeodeticmeasurementsatmo238andthe
mean annual air temperature/MAAT (running 12Ͳmont mean). This graph shows that the warm
MAATvaluesattheendof1994/beginningof1995causedanincreaseinsurfacedisplacementinthe
years1997to1999.Incontrast,thecoolerMAATvaluesbetweenendof1996andmid1997caused
lower velocities in 1999Ͳ2000. The MAAT values in the period 1999 to 2004 were generally high
causingasteadyincreaseofthevelocityratespeakingin2003Ͳ2004.Thiswaspreviouslyexplained
byconstantwarmingandanincreaseofliquidwaterinthepermafrostbodyoftherockglacier(Buck
&Kaufmann2008).Accordingtotheseauthors,therockglaciervelocityexperiencedinthisperioda
selfͲreinforcingdynamicleadingtoafurtherincreaseinvelocity.The MAAT valuesdecreasedafter
2004causingrockglacierdecelerationuntil2007Ͳ2008.TheextremeincreaseoftheMAATbetween
early2007tomidof2008causedanewaccelerationintheperiod2008to2010.
54
PermafrostResponsetoClimateChange
Fig.7–Meanannualairtemperature/MAAT(running12Ͳmonthmean)andhorizontalsurfacevelocitiesatthe
Dösenrockglaciermo238duringtheperiod1990to2010.DatasourceofvelocityvaluesKaufmannetal.(2007)
andunpublisheddata.Data
2.3Summaryofcurrentpermafrostdistributionanddynamics
Basedonthepermafrostresearchcarriedoutsofar,wecanconcludethatpermafrostinthestudy
areaDösenValleyexistsatextremesites(northͲexposedslopes,wellshelteredfromsolarradiation,
andcoarseͲblockymaterial)atelevationsdownto2200masl.Incontrast,onsouthͲexposedslopes
coveredbycoarseͲblockymaterialthelowerlimitisataround2600masl.Animportantroleplays
thewintersnowcoverinthelocalpermafrostdistributionparticularlyatsuchcoarseͲblockysites.On
theonehand,snowpoorsitesinradiationshelteredlocations(suchasGST6)allowefficientground
coolinginautumnaccompaniedbymoderatewarminginspring.Ontheotherhand,snowrichsites
atfootslopepositionsinradiationshelteredlocations(suchasGST5)reduceefficientgroundcooling
butshelterthegroundfromwarminginspringandevensummer.
OnslopesnotcoveredbycoarseͲblockymaterial,thelowerlimitofpermafrostissubstantiallyhigher
at elevations of between 2500 m asl. (northͲfacing) to 2900 m asl. (southͲfacing). At footslope
positions influenced by long lasting snow, the permafrost limit seems to be at around 2400 m asl
(northͲfacing) to 2700 m asl (southͲfacing). These results clearly show that local conditions
influencingsolarradiation,degreeofgroundcooling,thermalregimeofthegroundsurfaceandnear
groundsurfaceaswellaswintersnowcoverconditionshaveamajorimpactonthedistributionof
permafrost in the study area. This impact alters the general pattern of decreasing ground surface
temperaturewithincreasingelevationsubstantiallyandmakesthepermafrostdistributionpatternin
the study area (and at comparable sites in the neighbouring area) complex at elevations between
2200mand2900masl.
The behaviour of the monitored rock glacier mo238 in the inner Dösen Valley is in accordance to
othermonitoredrockglaciersintheHoheTauernRangeandtheentireAlpineArc.Duringthelast1.5
decades,twopeaksofhighsurfacedisplacementratesweredetectedat2003Ͳ2004and2008Ͳ2010
withratesexceeding30cmperyear.Therockglaciervelocitypatternindicatesthattherockglacier
mo238reactsquickerafteracoolperiodwithdeceleration.Incontrast,therockglacierneedsmore
timetoreacttowarmerperiodswithaccelerationofthemovementindicatingtheinertiaoftherock
glaciersystemtowardsgroundwarmingandvelocitychanges.
55
PermaNET–CasestudiesintheEuropeanAlps
3. Possiblefuturethermalresponsetopredictedclimatechange
Aspresentedabove,permafrostinthestudyareaDösenValleyplaysanimportantroleandcovers
presumably about 1/3 of the area above 2270 m asl. Besides the sole existence of permafrost in
bedrock and in slope deposits, permafrost in the study area is also important for geomorphic
periglacialprocessessuchascreepingoftheactiverockglaciers(inparticularrockglaciermo238)or
rockfallscausedbyfrostweatheringobservedfrequentlyduringeachfieldcampaign.
Climate change with the predicted temperature increase for the Greater Alpine Region (GAR) by
usingtherelativelyoptimisticCLMA1Bscenarioindicatesatemperatureincreaseofaround2°Cby
2050 (see Chapter 3). The air temperature at the meteorological station in the study area Dösen
Valleywouldbeslightlypositivewitharound+0.3°C.Ifusingalapserateof0.0065°C/mandtheair
temperatureincreaseof+2°C,theelevationofthezeroͲdegreeisothermwouldshiftbyabout310m
frompresently2340maslto2650maslcausingsubstantialpermafrostdegradationinthebedrock
(fasterreaction)andintheintactrockglaciers(slowerreactionwithalongertimelag).
The estimates for frost day (FD), ice day (ID) and (FTD) for the periods 1961Ͳ1990 and 2021Ͳ2050
based on air temperature data reveal for the study area Dösen Valley the following results: The
numberofFDwilldecreaseby14to15daysperyear.Forthesummitarea,thiswouldmean246Ͳ266
FDinsteadof261Ͳ280FD.Fortheelevationaroundtheactiverockglaciermo238(2350Ͳ2650,this
wouldyield226Ͳ246FDinsteadof241Ͳ260FD,henceareductionofFDbyupto5.7%.Thenumberof
IDwilldecreasealsobysome15to16daysperyear,henceareductionfrom201Ͳ220to185Ͳ205ID
inthesummitareasand,respectively,from161Ͳ180to145Ͳ165atelevationsataround2350to2650
masl,henceareductionofIDbyupto10%.Incontrast,thenumberofFTDwillpresumablyincrease
slightlyby0.1to2daysperyear.Intheperiod1961Ͳ1990,thenumberofFTDinthesummitareasis
about 70Ͳ80, at elevations at around 2350 to 2650 m asl about 80Ͳ90. Based on the own air
temperaturemeasurementsatthemeteorologicalstationat2603maslatthesurfaceofmo238,the
mean number of FD during the four year period September 2006 to August 2010 was 246.
Furthermore, 165 ID and 82 FTD were measured. This suggests that the modelling results for the
standardperiod1961Ͳ1990appliedfortheGARareinaccordancewiththemeasurementsof2006Ͳ
2010attheDösenValley.However,onehastokeepinmindthatMAATatthenearbymeteorological
observatorySonnblickwasaboutͲ1.3°Ccoolerduringthenormalperiod1961Ͳ1990comparedtothe
periodSeptember2006toAugust2010.ThisdifferenceintheMAATvaluesduringthetwoperiods
certainly influences the number of FD, ID and FTD. Therefore, this circumstance clearly shows that
comparinglocaldatawithregionalmodellingresultsisnottrivial.
Regarding rock glacier velocity and climatic conditions in the Dösen Valley, one can expect that an
increase of ground temperatures in the active rock glaciers will cause permafrost warming and
eventuallypartialthawingofthepermafrost.Thiswillleadtoanincreaseofliquidwaterintherock
glacierwhichitselfmightincreasethemobilityandhencesurfacevelocityoftherockglacier.Further
permafrost warming and thawing will lead to increasing friction within the rock glacier due to ice
loss, to complete permafrost degradation and finally to the formation of an inactive or even relict
rockglacierwithlittletonopermafrostice.
Thepredictedclimatechangeuntil2050willsubstantiallydecreasethearealextentofpermafrostin
thestudyareaDösenValleyaccompainedbydestabilisationofbedrockandslopedepositsaswellas
changes in frost weathering conditions and consequently rock fall activity. SouthͲfacing slopes not
covered by coarseͲblocky material will be permafrost free in the entire study area and only the
highest northͲfacing slopes will still be influenced by widespread permafrost. The role of substrate
material (coarse, fine, bedrock) and snow cover dynamics will be even more important for the
remainingpermafrostthantoday.Furthermore,temperatureincreasewillpresumablycausefirstan
increaseofthecreepvelocitiesofcurrentlymovingrockglacier.Inalaterstage,however,thiswill
leadtoinactivationofallpresentlyactiverockglaciersinthestudyareaDösenValley.
56
PermafrostResponsetoClimateChange
Acknowledgements. – This study was mainly carried out within the framework of the projects
ALPCHANGE,financedbytheAustrianScienceFund(FWF)throughprojectno.FWFP18304ͲN10,and
PermaNET.ThePermaNETprojectispartoftheEuropeanTerritorialCooperationandcoͲfundedby
the European Regional Development Fund (ERDF) in the scope of the Alpine Space Programme
www.alpinespace.eu. Viktor Kaufmann is thanked for providing unpublished data on rock glacier
velocities.TheCentralInstituteforMeteorologyandGeodynamics(ZAMG)isthankedforproviding
temperaturedatafromthemeteorologicalobservatorySonnblick.
References:
BuckS.&KaufmannV.,2008:Theinfluenceofairtemperatureonthecreepbehaviourofthreerockglaciersin
theHoheTauern.GrazerSchriftenderGeographieundRaumforschung,45,159Ͳ169.
Delaloye R., Perruchoud E., Avian M., Kaufmann V., Bodin X., Hausmann H., Ikeda A., Kääb A., KellererͲ
Pirklbauer A., Krainer K., Lambiel Ch., Mihajlovic D., Staub B., Roer I. & Thibert E. (2008): Recent
interannual variations of rock glacier creep in the European Alps. Proceedings of the Ninth
International Conference on Permafrost (NICOP), University of Alaska, Fairbanks, June 29 – July 3,
2008,343Ͳ348.
Gruber S. & Hoelzle M., 2008: The Cooling effect of coarse blocks revisited: a modeling study of a purely
conductive mechanism. Proceedings of the Ninth International Conference on Permafrost (NICOP),
UniversityofAlaska,Fairbanks,June29–July3,2008,557Ͳ561.
KääbA.,FrauenfelderR.&RoerI.,2007:Ontheresponseofrockglaciercreeptosurfacetemperatureincrease.
GlobalandPlanetaryChange,56,1Ͳ2:172Ͳ187.
KaufmannV.&LadstädterR.,2007:Mappingofthe3DsurfacemotionfieldofDoesenrockglacier(Ankogel
group, Austria) and its spatioͲtemporal change (1954Ͳ1998) by means of digital photogrammetry.
GrazerSchriftenderGeographieundRaumforschung,43,127Ͳ144.
Kaufmann V., Ladstädter R. & Kienast G., 2007: 10 years of monitoring of the Doesen rock glacier (Ankogel
group,Austria)–Areviewoftheresearchactivitiesforthetimeperiod1995Ͳ2005.Proceedings,5th
MountainCartographyWorkshop,29MarchͲ1April2006,Bohinj,Slovenia,129Ͳ144.
Keller F., 1992: Automated mapping of mountain permafrost using the program PERMAKART within the
GeographicalInformationSystemARC/INFO.PermafrostandPeriglacialProcesses,3,133Ͳ138.
KellererͲPirklbauer A., 2008: The SchmidtͲhammer as a Relative Age Dating Tool for Rock Glacier Surfaces:
Examples from Northern and Central Europe. Proceedings of the Ninth International Conference on
Permafrost(NICOP),UniversityofAlaska,Fairbanks,June29–July3,2008,913Ͳ918.
KellererͲPirklbauerA.&LiebG.K.,2011:Recentrockglaciervelocitybehaviourandrelatednaturalhazardsin
the Hohe Tauern Range, central Austria. PermaNET Project Report Ͳ Contribution of IGRS to Action
6.2/Group1–Rockglacier.
KellererͲPirklbauer A., Avian M., Lieb G.K. & Rieckh M., 2008a: Temperatures in Alpine Rockwalls during the
Warm Winter 2006/2007 in Austria and their Significance for Mountain Permafrost: Preliminary
Results. Extended Abstracts, Ninth International Conference on Permafrost (NICOP), University of
Alaska,Fairbanks,June29–July3,2008,131Ͳ132.
KellererͲPirklbauerA.,AvianM.,LiebG.K.&PilzA.,2008b:AutomaticDigitalPhotographyforMonitoringSnow
Cover Distribution, Redistribution and Duration in alpine Areas (Hinteres Langtal Cirque, Austria).
GeophysicalResearchAbstracts10:EGU2008ͲAͲ11359.
KellererͲPirklbauerA.,LiebG.K.&KleinferchnerH.,2010:Anewrockglacierinventoryattheeasternmarginof
theEuropeanAlps.GeophysicalResearchAbstracts12:EGU2010Ͳ13110.
Kenyi L.M. & Kaufmann V., 2003: Measuring rock glacier surface deformation using SAR interferometry.
Proceedingsofthe8thInternationalConferenceonPermafrost,Zurich,Switzerland,537Ͳ541.
57
PermaNET–CasestudiesintheEuropeanAlps
Kerschner H. & IvyͲOchs S., 2007: Palaeoclimate from glaciers: Examples from the Eastern Alps during the
AlpineLateglacialandearlyHolocene.GlobalandPlanetaryChange,60,58Ͳ71.
Kienast G. & Kaufmann V., 2004: Geodetic measurements on glaciers and rock glaciers in the Hohe Tauern
National Park (Austria). Proceedings, 4th ICA Mountain Cartography Workshop, 30 September Ͳ 2
October 2004, Vall de Núria, Catalonia, Spain, Monografies tècniques 8, Institut Cartogràfic de
Catalunya,Barcelona,101Ͳ108.
LiebG.K.,1991:DiehorizontaleundvertikaleVerteilungderBlockgletscherindenHohenTauern(Österreich).
ZeitschriftfürGeomorphologieN.F.,35,345Ͳ365.
Lieb G.K., 1996: Permafrost und Blockgletscher in den östlichen österreichischen Alpen. Arbeiten aus dem
InstitutfürGeographiederKarlͲFranzensͲUniversitätGraz,33,9Ͳ125.
LiebG.K.,1998:HighͲmountainpermafrostintheAustrianAlps(Europe).Proceedingsofthe7thInternational
ConferenceonPermafrost,Yellowknife,663Ͳ668.
LiebG.K.,KellererͲPirklbauerA.&KleinferchnerH.,2010:BlockgletscherinventarvonZentralundOstösterreich
erstelltimRahmendesProjektesPermaNET.InstitutsfürGeographieundRaumforschung,Graz
SchmöllerR.&FruhwirthR.K.,1996:KomplexgeophysikalischeUntersuchungaufdemDösenerBlockgletscher
(Hohe Tauern, Österreich). Arbeiten aus dem Institut für Geographie der KarlͲFranzensͲUniversität
Graz,33,165Ͳ190.
SmithM.W.&RiseboroughD.W.,2002:Climateandthelimitsofpermafrost:azonalanalysis.Permafrostand
PeriglacialProcesses,13,1Ͳ15.
58
3.
CasestudiesintheEuropeanAlps
3.4
HoherSonnblick,CentralAustria
Citationreference
Klee A, Riedl C. (2011). Chapter 3.4: Case studies in the European Alps – Hoher Sonnblick, Central
AustrianAlps.InKellererͲPirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponseto
presentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.
OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.59Ͳ65.
Authors
Coordination:AlexanderKlee
Involvedprojectpartnersandcontributors:
Ͳ CentralInstituteforMeteorologyandGeodynamics(ZAMG)–AlexanderKlee,ClaudiaRiedl
Content
Summary
1. Introductionandstudyarea
2. Measurementsandresults
3. Possiblefuturethermalresponsetopredictedclimatechange
References
59
PermaNET–CasestudiesintheEuropeanAlps
Summary
Climate change in the Alps is not only related to the retreat of glaciers, but rather to the
permafrost distribution. Indices for the permafrost retreat in the higher mountain area, e. g.
erosion, frost shattering or instabilities of the infrastructure are observable. The relevance of
permafrostlongͲtermmonitoringiswidelyspread.Theknowledgeaboutpermafrostinteraction,
influencesonpermafrostandthetemporalbehaviourofpermafrostisveryimportantforseveral
kindsofinfrastructure,e.g.cablelifts,liftstationsormountainhuts.Furthermorethisknowledge
is the basis for measuring the drinking water reservoirs of permafrost in the higher mountain
areas,itsqualityanditsusageforthefuture.DetaileddataabouttheglacierͲretreatisavailable.
But the permafrost distribution Ͳ including its thickness and spatial dimension Ͳ is largely
unknown. On the top of Hoher Sonnblick (3.105 m asl) in the Hohe Tauern (Austria) three
boreholeshavebeeninstalledtomeasurerocktemperaturesdownto20munderthesurface.
Thisdataabouttemperature,geophysicalandgeodeticalmeasurements(availablesince2007)is
a first approach for the documentation of permafrost behaviour in the Alps. Furthermore the
summit region of Hoher Sonnblick will be modelled with the aim to compute the behaviour of
permafrostinthefuturewithdifferentscenariosinclimatechange.
60
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
ThetopofHoherSonnblick(3.105ma.s.l.)islocatedintherangeoftheEasternAlpsintheregionof
HoheTauern(Austria).NeighbouringmountainsofHoherSonnblickreachsimilarelevationsofabout
3.000ma.s.l..ThenorthslopeofHoherSonnblickischaracterizedbyaverydeepandsteepnorth
face. To the south the slope is moderate with about 30° down to the upper margin of the glacier
Goldbergkees.Fig.1showsthesummitareaofHoherSonnblick.
InthevicinityofHoherSonnblickarethreeglaciers.Thelargestglacierisofthethreeistheglacier
Goldbergkees.ThetwosmalleronesareKleinfleißkeesandPilatuskeesbothwithoutatypicalglacier
tongue.Glaciericeoccurrencedowntoabout2.500ma.s.l..Therockintheregionconsistsmainlyof
biotitͲgneiss(Exner,1964).Thethicknessofthedebrislayermantlingthebedrockinthesummitarea
(wherethethreeboreholesweredrilled;Fig.1)isupto2m.
Fig. 1 – The summit of Hoher Sonnblick (3105 m a.s.l.) with the location of the three boreholes. To the right
Zittelhausandtothelefttheobservatorium.ThesummitinthebackgroundisMt.Hocharn(3254ma.s.l.)
The observatory was built at the end of 19th century and a mountain hut, the Zittelhaus, is also
locatedontopofthesummit.In2001astudyobservedthatfissuringofthecrestdemandsforthe
necessity of a geological stabilization of the steep north face to protect the observatory. This reͲ
development was done from 2003 to 2007. The main reason for the fissuring is the change in
meteorological conditions in the 20th century. Higher temperatures and more liquid precipitation
advance the physical weathering process of the rock. Higher temperature contrasts causes frost
shattering,whichismoreactivethaninpasttimes.
61
PermaNET–CasestudiesintheEuropeanAlps
Climatologicalmeasurements,especiallyoftemperature,startedin1886.Actually,eachyearcounts
310 freezing days (daily minimum below 0° C) and 239 ice days (daily maximum below 0° C). All
valuesrefertotheperiodbetween1971and2000.Uptonowanunbrokentemperaturerowexists.
Next to temperature measurements and measurements of other meteorological parameters, the
Sonnblickobservatoryisacentreofseveralscientificactivities.E.g.measurementsinatmospheric
chemistry,snowchemicalmeasurements,massbalancemeasurementsofthesurroundingglaciers,
avalanche reports, of course the permafrost longͲterm monitoring since 2007 and many more
researchactivitiesactuallytakeplaceatHoherSonnblick.
2. Measurementsandresults
Tomeasurethebehaviourofpermafrostandtheinfluencesofclimatechangeforpermafrostontop
ofHoherSonnblick,three20mdeepboreholesweredrilledon14thand15thSeptember2005.At
theendofAugust2006theboreholeswereequippedwithtemperaturesensorsindifferentdepths
(Fig. 2). Additionally, a 10 m deep borehole next to borehole 2 was drilled and equipped with
extensometers. Daily actualized measurements of temperature data and extensometer data are
availableonlineatwww.sonnblick.net.Allboreholesarelocatedonthesouthernslope(seeFig.1).
Themeanslopebetweenborehole1and3is27°andthetotalelevationdifferenceis34m.Borehole
1isdirectlylocatedtotheSonnblickobservatory,borehole3isadjacenttoacontinuoussnowfield
andborehole2islocatedinbetween.
Not only measurements in the boreholes are available. In October 2006 35 miniature temperature
datalogger/MTD(20ofthetypeUTLͲ1andUTLͲ2and15ofthetypeHOBOTidbiT)wereinstalledto
measure the basic temperature of the snow cover in wintertime and the ground surface
temperatures during summer. The 20 logger of type UTLͲ1 and UTLͲ2 were installed on moderate
slope on the southern side of the summit. In the steep north face, the 15 HOBO TidbiTs were
installed. Furthermore, the air temperature change in the past since 1886 is also available. Fig. 3
shows an example of temporal variability of the temperature with increasing depth for the
hydrological year in 2008. Measurements of the boreholes show that the summerly temperature
amplitudeisobservabledownto15mwithadelayofabout6to7months.
Thecoolingfromthewinterseasoniseffectiveto5mwithadelayofabout4months.Thethickness
oftheactivelayerinsummertimewasaboutinborehole1in20081mand70cmin2009.Inthe
boreholes2and3theactivelayerislessthan1m.There,theactivelayerwasabout60cmin2008.
In 2009 there are no data available for borehole 2 and 3. Naturally, in the upper layers of the
boreholesthedifferencesbetweensummerandwinterseasonsarelargerthanindeeperlevels.Itis
also interesting to compare yearly average temperatures as it is done in Fig. 4. On the xͲaxis the
temperature is assigned and on the yͲaxis the depth of the borehole. The figure shows the
temperature of borehole 1 in 2008 (blue line) and in 2009 (red line). Down to
about9mthetemperatureprofilein2008ismuchwarmerthanin2009.In3mthereisadifference
of0.7°C.Inautumn2009thesummitregionwassnowlessorwithonlyathinsnowcoverforalong
timewhichcausedthesedifferences.
62
PermafrostResponsetoClimateChange
Fig. 2 Ͳ Construction of measurement chain in the boreholes with depths of the temperature sensors and
geophones.Additionally,theentranceofoneboreholeisshown.
63
PermaNET–CasestudiesintheEuropeanAlps
Fig 3 – Temporal temperature variability with increasing depth for borehole 1 during the hydrological year
2007/2008.
Fig.4–Meantemperaturesofborehole1in2008(blueline)and2009(redline).
64
PermafrostResponsetoClimateChange
Inwinter2008/09anearlyandthicksnowcoverexistedsothecoldnesscouldnotpenetrateintothe
ground. This fact causes the higher mean temperature in the upper layers in 2009. Another fact is
illustrated in Fig. 4. Below 10 m the temperature of the years 2008 and 2009 are similar. One
explanationcouldbethatthepenetrationdepthofseasonallytemperatureonlyreachesadepthof
15m.ThisbehaviourisalsoillustratedinFig.3.Below15mtherearenearlynotemporalfluctuations
andbetween10and15mthefluctuationsareverysmall.
Asitwasmentionedabove,nexttoborehole2isanothermoreshallowborehole,whichwasdrilled
down to 10 m and is equipped with extensometers. Measurements show that in autumn the
extensometersmeasurenegativevalues,whichcanbeidentifiedwithcompression.Notenoughdata
are available yet for late spring and summer, but a first guess would be stretching with positive
values.Thishypothesiswillbetestedinsummer2011,whenwinterseasonisgone.
3. Possiblefuturethermalresponsetopredictedclimatechange
Because measurements exist only since 2007 it is not possible to make statements concerning
permafrostretreatinthepastclimatewarmingatSonnblickuntilnow.Butwiththehelpofclimate
models which are able to compute temperature development in the future with different
assumptions, it is achievable to produce possible future scenarios. As it is described in section 3.1,
above1.800ma.s.l.iceandfrostdayswillbereducedbyabout14daysperyearbetween2021and
2050 and also freezeͲthaw days will increase about 3 to 5 days per year in this timeͲperiod (the
referenceintervalis1961to1990).ActuallyonHoherSonnblick310freezingdayswillbereducedto
296and239icedayswillbereducedtoabout225dayswithdailymaximumbelow0°C.Underthese
scenariospermafrostinhighermountainareaswillretreat.Especiallyupperrocklayerswillreactfast
to the warming of the air. In deep layers, where the temperature change during one year is not
observable,warmingwillbeslower.TheincreaseoffreezeͲthawdayswillbenefitweathering,frost
shattering and fissuring. In regions with permafrost existence higher activity in rockfall will affect
humaninfrastructure,mountainclimbersandchangeofthelandscape.
Acknowledgement.ThisworkwaspartlygrantedbytheprojectPermafrostinAustriabytheAustrian
AcademyofScience.
References:
ExnerCh.,1964.ErläuterungenzurgeologischenKartederSonnblickgruppe1:50.000.Geol.B.ͲA.168
S.,Vienna.
65
PermaNET–Permafrostresponsetoclimatechange
3.
CasestudiesintheEuropeanAlps
3.5
RockGlacierHochebenkar,WesternAustria
Citationreference
Krainer K. (2011). Chapter 3.5: Case studies in the European Alps – Rock Glacier Hochebenkar,
Western Austrian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic permafrost
responsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreport
ofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.66Ͳ76.
Authors
Coordination:KarlKrainer
Involvedprojectpartnersandcontributors:
Ͳ InstituteofGeologyandPaleontology,UniversityofInnsbruck(UIBK)–KarlKrainer
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentgeomorphicevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
66
PermafrostResponsetoClimateChange
Summary
Rock glacier Hochebenkar is a tongueͲshaped active rock glacier located in a small Northwest
facingcirqueintheÖtztalAlps(Austria;46°50´14´´N,11°00´46´´E).Morphologyandhighsurface
flowvelocitiesindicatethattherockglaciercontainsamassiveicecoreandthuspointtoaglacial
origin.Duringwinter,thetemperatureatthebaseofthesnowcover(BTS)issignificantlylower
ontherockglacierthanonpermafrostͲfreegroundadjacenttotherockglacier.Dischargeofthe
rockglacierischaracterizedbystrongseasonalanddiurnalvariationsandisstronglycontrolled
by the local weather conditions, particularly the amount of snow and rainfall events. Water
temperature of the rock glacier springs remains constantly low, mostly below 1°C during the
entire melt season. During the last decades changes in the velocity of the rock glacier show a
closecorrelationwithchangesinthemeanannualairtemperatureofnearbyweatherstations.
The strong decrease in thickness in the lowermost, steep part of the rock glacier is caused by
increasedmeltingoficeandindicatesthepresenceofamassiveicecore.Ifincreasedmeltingwill
continueduringthenextdecadesflowvelocitywilldecreaseandtheactiverockglacierwillpass
intoaninactiveone.
67
PermaNET–Permafrostresponsetoclimatechange
1. Introductionandstudyarea
PermafrostiswidespreadintheAlpswhichisdocumentedbythelargenumberofrockglaciersthat
havebeenmappedintheeasternpartoftheAlps,particularlyinthecentralmountainranges(e.g.
ÖtztalandStubaiAlps).AspermafrosttemperaturesintheAlpsarejustslightlybelow0°Candthe
frozencoreofrockglaciersisthin,rarelyexceeding25m,permafrostintheAlps,particularlyactive
and inactive rock glaciers, are very sensitive to climate change. Studies on Alpine permafrost,
particularly on active rock glaciers, advanced rapidly during the last two decades (see summary by
Haeberlietal.2006).IntheAustrianAlpsseveralrockglaciershavebeenstudiedindetailinrecent
years (e.g. Lieb, 1986, 1987, 1991, 1996; Lieb & Slupetzky 1993; Kaufmann, 1996a, b, Kaufmann &
Ladstädter2002,2003,KellererͲPirklbauer2007,2008,Bergeretal.2004,Krainer&Mostler,2000,
2001,2002,2004,2006,Kraineretal.2002,2007,Hausmannetal.,2007).
Hochebenkar rock glacier is located in Äußeres Hochebenkar, a Northwest oriented cirque in the
southernÖtztalAlps,about4.3kmSSWofObergurgl,Ötztal(Tyrol,Austria).AlthoughHochebenkar
rock glacier has been studied concerning flow velocities for more than 70 years (see below), only
littleinformationisavailableaboutcomposition,thickness,hydrologyandthermalconditions.
Fig.1–RockglacierHochebenkarwithlocationofsprings,gaugingstationsandtemperatureloggers
(fromAbermannetal.2011).
68
PermafrostResponsetoClimateChange
Hochebenkarrockglacieristongueshapedandextendsfromanaltitudeof2840m(rootingzone)to
2360m (front). The maximum length of this active, NWͲfacing rock glacier is 1550m. The width
rangesfrom160mnearthefrontto335minthemiddleandupto470mintheupperpart.Therock
glaciercoversanareaof0.4km²,thedrainageareacomprises1km².
ThesurfacelayeriscoarseͲgrainedwithvaryinggrainsizeandlocallywelldevelopedtransverseand
longitudinalfurrowsandridges.Adepressionisdevelopedinthewesternpartoftherootingzone.
The front is steep and bare of vegetation. The highest peaks surrounding the rock glacier are
Hangerer(3021m)ontheeasternsideandtheHochebenkammwithitshighestpointat3149mon
the southern side, separated by the Hochebenscharte (2895m). The debris of the rock glacier is
derivedfromthesteeprockwallsoftheHochebenkamm.
Bedrockin thedrainageareaoftherockglacieris composedofparagneissandmicaschistsofthe
ÖtztalͲStubaicomplex.AtHochebenkammthebedrockiscutbynumeroussteepfaultsalongwhich
highamountsofdebrisareproducedbyfrostweathering,particularlyduringbreakͲupinspringand
earlysummer.
TheaimofthiscasestudycontributionistopresentsomepreliminarydataonthedynamicsofRock
GlacierHochebenkar,oneofthelargestandmostactiverockglaciersoftheAustrianAlps.
Fig.2:Viewtothesteep,activefrontofHochebenkarrockglacier(viewtowardsSW)
69
PermaNET–Permafrostresponsetoclimatechange
2. Permafrostindicatorsandrecentgeomorphicevolution
2.1Previousstudies
Hochebenkar rock glacier is one of the largest and most active rock glaciers in the Austrian Alps,
whichalsoshowstheworldwidelongestrecordofflowvelocities.Pillewizerstartedtomeasureflow
velocitieson Hochebenkarrockglacier in1938.Sincethattime,i.e.overaperiodofmorethan70
years,flowvelocitiesonthisrockglacierhavebeenmeasuredbyterrestrialphotogrammetry,since
1951 by terrestrial geodetic methods (Theodolite) and since 2008 by differential GPS (Pillewizer
1938, 1957; Vietoris 1958, 1972; Haeberli & Patzelt 1982; Kaufmann 1996; Schneider & Schneider
2001;Kaufmann&Ladstädter2002,2003;Ladstädter&Kaufmann2005).Haeberli&Patzelt(1982)
measured thebasaltemperaturesofthewintersnowcoverin February1975,1976and 1977,and
the water temperature of rock glacier springs during summer. They also carried out refractionͲ
seismicmeasurementsalong11transectsonfrozenandunfrozenground.
2.2Rockglacierdynamicsandthermalregime
DuringthelastyearsintensiveinvestigationshavebeencarriedoutonHochebenkarrockglacierto
study the dynamics. These investigations include field mapping of the bedrock and sediments and
geomorphologic features, grainͲsize analysis of the debris layer, BTS measurements, hydrology,
georadarandflowvelocitymeasurements(detailsinAbermannetal.2011).
Fig.3:GrainͲsizedistributionofthreesitesonHochebenkarrockglacier.Greenbars:coarseͲgrained,
bluebars:mediumͲgrained,redbars:fineͲgrined.
70
PermafrostResponsetoClimateChange
Grainsizeofrockglacier
ThesurfacedebrislayerofHochebenkarrockglacieriscoarseͲgrainedwithanaveragegrainsize(aͲ
axis)measuring35cmonfinergrainedareasand58cmoncoarsergrainedareasinthemiddlepart
(Fig.3).Locallyblocksuptoafewmindiameteroccuronthesurface.Similarvaluesarerecorded
from other rock glaciers composed ofdebris derived from gneisses and schists (Berger et al. 2004,
KrainerandMostler2001,2004).
The coarseͲgrained debris layer has a maximum thickness of 1.5m and is underlain by debris
containinghigheramountsofsandandsilt(Fig.4)displayingpoortoverypoorsortingwithvaluesof
2.96Ͳ3.23Phi (inclusive graphic standard deviation after Folk & Ward, 1957). Similar values have
been reported from other rock glaciers (Barsch et al. 1979, Giardino & Vick 1987, Haeberli 1985,
Krainer&Mostler2000,2004,Bergeretal.2004)andtills.
Fig.4:CumulativecurvesoftwosamplestakenatthesteepfrontofHochebenkarrockglacier.Both
samplesshowasimilartrendindicatingpoorsorting.
Thermalregimeofground
BTSmeasurementsperformedbyHaeberli&Patzelt(1982)inFebruary1975,1976and1977yielded
meanvaluesrangingbetweenͲ4.8andͲ7°C.SimilartemperatureswererecordedinMarch2010.
Duringwinter2006/2007eighttemperatureloggerswereinstalledwhichrecordedthetemperature
atthebaseofthesnowcoveratanintervaloftwohours.Resultsshowthatthetemperatureatthe
base of the snow cover on permafrostͲfree ground near the gauging station remained constantly
between 0 and Ͳ1°C from November until May. From December until April temperatures varied
betweenͲ3andͲ4°Cat thewesternmarginandbetweenͲ2andͲ4°Catthe eastern marginofthe
rockglacier.BTStemperaturesweresignificantlydeeperinthecentralpartoftherockglacierranging
betweenͲ5andͲ9.3°Cwithonlyminorvariations.Thedeepesttemperature(Ͳ9.9°C)wasobservedin
earlyJanuary.SnowmeltstartedduringthefirsthalfofMay.
71
PermaNET–Permafrostresponsetoclimatechange
SimilarBTStemperaturepatternswererecordedonotheractiverockglaciersintheÖtztalandStubai
Alps (Ölgrube rock glacier – Berger et al. 2004, Reichenkar rock glacier – Krainer & Mostler 2000,
Sulzkarrockglacier–Krainer&Mostler2004)andSchoberMountains(Krainer&Mostler2001).
Thermalregime,dischargeandelectricalconductivityofwatersprings
Water temperature of the rock glacier springs remained almost continuously <1°C during summer.
Even after heavy thunderstorms in summer with rather “warm” rainfall causing peak floods in
dischargeoftherockglacierthewatertemperaturedidnotchange.
AtHochebenkarrockglaciermostofthemeltwater isreleasedfromspringsatthefront(Fig.1).A
minoramount(ca.30%) ofmeltwaterisreleasedfromtwospringsontheeasternsideoftherock
glacieratanaltitudeof2575m(Fig.1).About95mdownstreamagaugingstationwasinstalledin
spring2007atanaltitudeof2555minordertorecordthewaterdepthversustimeduringthemelt
season.Waterdepthofthemeltwaterstreamiscontinuouslyrecordedbyapressuretransducerat
intervalsof1hour.
The discharge of the rock glacier is mainly controlled by water derived from snowmelt, summer
thunderstorms and/or snowfall during summer and thus displays pronounced seasonal and diurnal
variationsindischarge.Runoffin2009startedduringAprildisplayingfloodswithmaximumflowpeak
duringMayandJunecausedbyfairweatherperiodswithintensemeltingofsnowandice(Fig.5).A
rapid decline in discharge was recorded a few hours after influx of cold air which sometimes was
accompanied by snowfall. ShortͲterm floods with peakflows >100l/s are triggered by summer
thunderstorms with heavy rainfall. From July until September discharge decreased and was
interruptedbysinglepeakflowscausedbyrainfallevents.
Fig. 5 – Hydrograph (water heights, blue line) of the meltwater stream released from Hochebenkar
rockglacier(springsattheeasternsideoftherockglacier)fortheperiodApriltoSeptember2009.
Redlineindicateswatertemperatureatthegaugingstation(locationseeFig.1).
Thevaluesforelectricalconductivityofthewaterdischargedfromtherockglaciervarysignificantly
overtheseason.AtHochebenkarrockglaciersignificantlyhighervaluesofelectricalconductivityare
recordedatthetwospringsontheeasternsidethanatthemainspringatthefront.
72
PermafrostResponsetoClimateChange
AtspringswhichoccuratthebaseofthesteepfrontelectricalconductivityisextremelylowinMay
andJune(20Ͳ30µS/cm)andincreasesslightlyreachingvaluesof40µS/cmbytheendofAugustand
60µS/cm at the beginning of October. The water temperature at these springs ranges from 0.6 to
1.4°C.
At the two springs on the eastern side of the rock glacier the values of electrical conductivity are
significantly higher with 100Ͳ200µS/cm in June, increasing to 400µS/cm during August and to
570µS/cmduringSeptember.Watertemperatureisverylowwith0.2Ͳ0.4°C.Theseasonalvariation
inelectricalconductivityresultsfromthedifferentmixingratiooflowmineralizedprecipitationand
highermineralizedgroundwater(Krainer&Mostler2001,2002,Kraineretal.2007).
Rockglacierdynamics
Fortheperiod1938Ͳ1953Pillewizer(1957)documentedamaximumflowvelocityintheupperpart
(profile B) of 75cm/a, and 85 cm/a for the period 1953Ͳ1955. Profile 2 yielded flow velocities of
1.61mfortheperiod1951Ͳ1952,1.84mfortheperiod1952Ͳ1953and1.53mfortheperiod1953Ͳ
1955(Pillewizer1957,Vietoris1958).
Significantly higher flow velocities (average 3.9m/a, maximum6.6 m/a) were recorded between
1954 and 1972, whereas between 1973 and 1995 flow velocities were lower (average 1.15m/a,
maximum2m/a).Flowvelocitiesagainincreasedsince1995reachingthehighestvaluesin2003,and
thendecreasedagain(seeAbermannetal.2011).
Recentmorphologicalchanges
From1936to1997thefrontoftherockglacieradvancedfor165m(Schneider&Schneider2001).
AccordingtoKaufmann(1996)thefrontofHochebenkarrockglacieradvancedfor148mduring50
years,indicatingameanflowvelocityof3m/aforthatperiod.Thelowermostprofile1yieldedthe
highestflowvelocitiesof3.57m/a(1953Ͳ1955)whichincreasedto5m/a(Vietoris1972).Since1995
asignificantdecreaseinthicknesswasobservedinthelowermost,steeppartoftherockglacier.
2.3DiscussionandConclusion
Morphologyanddebrispropertiesoftheactivelayerareverysimilartootherrockglacierscomposed
ofdebrisderivedfrommetamorphicrocks,particularlygneissandschist(Bergeretal.2004;Krainer
&Mostler2000,2001,2004).BasedongrainͲsizeofthesurfacelayerHochebenkarrockglacierisa
typicalboulderrockglacieraccordingtoIkedaandMatsuoka(2006).Temperaturesatthebaseofthe
wintersnowcover(BTS)aretypicalforactiverockglaciersandsimilartothoserecordedfromother
activerockglaciersintheAustrianAlps(Bergeretal.2004;Krainer&Mostler2000,2001,2004).The
pronounced seasonal and diurnal variations in discharge are strongly controlled by the weather
conditions.Waterreleasedattherockglacierspringsismainlyderivedfromsnowmeltandsummer
rainfall,subordinatelyfrommeltingofpermafrosticeandgroundwater.Floodpeaksarecausedby
intensivesnowmeltonwarm,sunnydaysduringlatespringandearlysummerandbyrainfallevents.
Thewatertemperatureoftherockglacierspringswhichremainspermanentlybelow1.5°C,mostly
below1°C,indicatesthatthewaterflowsthroughtherockglacierindirectcontactwithpermafrost
ice(Krainer&Mostler2002,Kraineretal.2007).Extremelyhighvaluesoftheelectricalconductivity
at the spring on the eastern side of the rock glacier indicate a much longer residence time of the
watercomparedtothewaterreleasedatthespringsatthesteepfrontwhichischaracterizedbyvery
lowvaluesindicatingthattheresidencetimeisshortandthatthewaterisderivedfrommeltingof
iceandsnowandrainfall.
73
PermaNET–Permafrostresponsetoclimatechange
Thedepressionintherootingzoneandthepronounceddecreaseinthicknessinthelowermostpart
duringthelastyearsindicatemeltingofmassiveiceandwesuggestthatHochebenkarrockglacier
has a glacial origin similar to Reichenkar rock glacier (Krainer & Mostler 2000, Krainer et al. 2002,
Hausmann et al. 2007). High iceͲcontent is also indicated by annual flow velocities which are
significantly higher than those of most other active rock glaciers with typical values of 0.1Ͳ1m.
Schneider & Schneider (2001) showed that the variations in flow velocity correlate with the mean
annual air temperature values. Higher flow rates during warmer periods are probably caused by
higher amounts of meltwater within the rock glacier and near the base, probably also to slightly
highericetemperatures.
Hochebenkar rock glacier most likely developed from a debrisͲcovered cirque glacier due to the
inefficiencyofsedimenttransferfromglaciericetomeltwater,amodelproposedbyShroderetal.
(2000)basedonstudiesintheNangaParbatHimalaya.
3. Possiblefuturethermalresponsetopredictedclimatechange
In high alpine mountain environments permafrost is warm (Ͳ2 to 0°C) and thus highly sensitive to
temperaturechanges.WhereaswarmingofpermafrostwasobservedinthenorthernpartsofEurope
of 0.5Ͳ1°C during the period 1998Ͳ2008, no clear warming trend was recorded in the Alps for this
periodduetohighannualvariationsresultingparticularlyfromvaryingthicknessesofthesnowcover
(GärtnerͲRoer et al. 2011). However, field observations show that many rock glaciers in the Alps
alreadyreactedonthewarmingtrendduringthelastdecade.AsmostrockglaciersintheAlpsare
located near the lower boundary of discontinuous permafrost, which is thin and rather “warm”,
theserockglaciersareexpectedtoreactmorerapidlytoevenslighttemperaturechangescompared
torockglaciersofcolderregions.
AtHochebenkarrockglacierasignificantdecreaseinthicknesswasobservedduringthelast15years
in the steep lower part indicating increased melting of permafrost ice. This already resulted in a
decrease of flow rates. If the trend of global warming will continue, melting of permafrost ice will
continue, particularly in the lower part of the rock glacier which is close to the lower limit of
permafrost,resultinginadecreaseinflowvelocity.
Butevenintheupperpartoftherockglacierincreasedmeltingofpermafrosticeisexpected.Thus
Hochebenkarrockglacierwilltransformfromahighlyactiverockglacierintoaninactiverockglacier
duringthenextdecades.Asaconsequence,vegetationwillstarttogrowonthefineͲgrained,steep
frontalpartoftherockglacier,whichisstillbareofvegetation.
Changes of total rock glacier discharge will depend on changes of annual precipitation. Increased
melting of permafrost ice will slightly increase the amount of meltwater derived from ice, which
constitutes only a small part (<10%) of the total discharge. Warming will change the discharge
patternofrockglaciers:themeltingseasonwillstartearlier(inAprilinsteadofearlyMay),andsnow
is expected to melt more rapidly within a shorter period during May and June causing high peak
flows.Thesepeakflowsmaybeoverprintedbysinglerainfalleventsresultinginextremepeakflows.
Heightofpeakflowandlengthofthepeakflowperiodwilldependonthesnowheightswhichalso
maychange.SuchadischargepatternwithonsetofthemeltperiodinAprilandextremepeakflows
due to intensive snowmelt during May and early June was already recorded in the extreme warm
summerof2003.LowdischargeisexpectedforJulyuntiltheendofthemeltperiod,interruptedby
singlepeakflowscausedbyrainfallevents.
Acknowledgements:MonitoringofHochebenkarrockglacierisfundedbytheAustrianAcademyof
Sciences(project“ImpactofClimateChangeonAlpinePermafrost”).
74
PermafrostResponsetoClimateChange
References:
Abermann,J.,Fischer,A.,Krainer,K.,Nickus,U.,Schneider,H.,&Span,N.,2011:Resultsofrecentresearchon
RockGlacierÄußeresHochebenkar.ZeitschriftfürGletscherkundeundGlazialgeologie(submitted).
BarschD.,FierzH.&HaeberliW.,1979:Shallowcoredrillingandboreholemeasurementsinpermafrostofan
activerockglacierneartheGrubengletscher,Wallis,SwissAlps.ArcticandAlpineResearch,11,215Ͳ
228.
BergerJ.,KrainerK.&MostlerW.,2004:Dynamicsofanactiverockglacier(ÖtztalAlps,Austria).Quaternary
Research,62,233Ͳ242.
FolkR.L.&WardW.C.,1957:BrazosRiverBar:Astudyinthesignificanceofgrainsoilparameters.Journalof
SedimentaryPetrology,27,3Ͳ26.
GärtnerͲRoerI.,ChristiansenH.H.,EtzelmüllerB.,FarbotH.,GruberS.,IsaksenK.,KellererͲPirklbauerA.,Krainer
K.&NoetzliJ.,2011:Permafrost.In:T.Voigt&H.M.Füssel(eds),Impactsofclimatechangeonsnow,
ice,andpermafrostinEurope:Observedtrends,futureprojections,andsocioeconomicrelevance:66Ͳ
76.
Giardino J.R. & Vick S.G., 1987: Geologic engeneering aspects of rock glaciers. Rock Glaciers, Allen & Unwin,
London,265Ͳ287.
Haeberli W., 1985: Creep of mountain permafrost: Internal structures and flow of alpine rock glaciers.
MitteilungenderVersuchsanstaltfürWasserbau,HydrologieundGlaziologieETHZürich,77,1Ͳ142.
Haeberli W. & Patzelt G., 1982: Permafrostkartierung im Gebiet der HochebenkarͲBlockgletscher, Obergurgl,
ÖtztalerAlpen,ZeitschriftfürGletscherkundeundGlazialgeologie,18,127Ͳ150.
Haeberli W., Hallet B., Arenson L., Elconin R., Humlum O., Kääb A., Kaufmann V., Ladanyi B., Matsuoka N.,
SpringmanS.&VonderMühllD.,2006:PermafrostCreepandRockGlacierDynamics.Permafrostand
PeriglacialProcesses,17,189Ͳ214.
HausmannH.,KrainerK.,BrücklE.&MostlerW.,2007:InternalStructureandIceContentofReichenkarRock
Glacier (Stubai Alps, Austria) Assessed by Geophysical Investigations. Permafrost and Periglacial
Processes,18,351Ͳ367.
Ikeda A. & Matsuoka N., 2006: Pebbly versus boulder rock glaciers: Morphology, structure and processes. –
Geomorphology,73,279Ͳ296.
KaufmannV.,1996a:DerDösenerBlockgletscher–StudienkartenundBewegungsmessungen.Arb.Inst.Geogr.
Univ.Graz,33,141Ͳ162.
KaufmannV.,1996b:GeomorphometricmonitoringofactiverockglaciersintheAustrianAlps.4th International
SymposiumonHighMountainRemoteSensingCartography.Karlstad,Kiruna,Tromso,August19Ͳ29,
1996,97Ͳ113.
Kaufmann V. & Ladstädter R., 2002: SpatioͲtemporal analysis of the dynamic behaviour of the Hochebenkar
rockglaciers(OetztalAlps,Austria)bymeansofdigitalphotogrammetricmethods.GrazerSchriftender
GeographieundRaumforschung,37,119Ͳ140.
Kaufmann V. & Ladstädter R., 2003: Quantitative analysis of rock glacier creep by means of digital
photogrammetry using
multiͲtemporal aerial photographs: two case studies in the Austrian Alps.
Proceedingsofthe8th InternationalConferenceonPermafrost,21Ͳ25July2003,Zurich,Switzerland,1,
525Ͳ530.
KellererͲPirklbauer A. 2007: Lithology and the distribution of rock glaciers: Niedere Tauern Range, Styria,
Austria.Z.Gemorph.N.F.,51/2,17Ͳ38.
KellererͲPirklbauer A., 2008: The SchmidtͲhammer as a Relative Age Dating Tool for Rock Glacier Surfaces:
Examples from Northern and Central Europe. Proceedings of the Ninth International Conference on
Permafrost(NICOP),UniversityofAlaska,Fairbanks,June29–July3,2008,913Ͳ918.
75
PermaNET–Permafrostresponsetoclimatechange
Krainer K. & Mostler W., 2000: Reichenkar Rock Glacier: a Glacier Derived DebrisͲIce System in the Western
StubaiAlps,Austria.PermafrostandPeriglacialProcesses,11,267Ͳ275.
KrainerK.&MostlerW.,2001:DeraktiveBlockgletscherimHinterenLangtalKar,Gößnitztal(Schobergruppe,
NationalparkHoheTauern,Österreich).Wiss.Mitt.NationalparkHoheTauern,6,139Ͳ168.
Krainer K. & Mostler W., 2002: Hydrology of Active Rock Glaciers: Examples from the Austrian Alps. Arctic,
Antarctic,andAlpineResearch,34,142Ͳ149.
Krainer K. & Mostler W., 2004: Aufbau und Entstehung des aktiven Blockgletschers im Sulzkar, westliche
StubaierAlpen.Geo.Alp,1,37Ͳ55.
KrainerK.&MostlerW.,2006:FlowVelocitiesofActiveRockGlaciersintheAustrianAlps.GeografiskaAnnaler,
88A,267Ͳ280.
Krainer K., Mostler W. & Span N., 2002: A glacierͲderived, iceͲcored rock glacier in the Western Stubai Alps
(Austria): Evidence from ice exposures and ground penetrating radar investigation. Zeitschrift für
GletscherkundeundGlazialgeologie,38,21Ͳ34.
Krainer K., Mostler W. & Spötl C., 2007: Discharge from active rock glaciers, Austrian Alps: a stable isotope
approach.AustrianJournalofEarthSciences,100,102Ͳ112.
LadstädterR.&KaufmannV.,2005:StudyingthemovementoftheOuterHochebenkarrockglacier:Aerialvs.
groundͲbased photogrammetric methods. Second European Conference on Permafrost, Potsdam,
Germany,TerraNostra2005(2),97.
LiebG.K.,1986:DieBlockgletscherderöstlichenSchobergruppe(HoheTauern,Kärnten).Arb.Inst.Geogr.Univ.
Graz,27,123Ͳ132.
Lieb G.K., 1987: Zur spätglazialen GletscherͲ und Blockgletscehrgeschichte im Vergleich zwischen den Hohen
undNiederenTauern.Mitt.Österr.Geogr.Ges.,129,5Ͳ27.
LiebG.K.,1991:DiehorizontaleundvertikaleVerteilungderBlockgletscherindenHohenTauern(Österreich).
Z.Geomorph.N.F.,35,345Ͳ365.
LiebG.K.,1996:PermafrostundBlockgletscherindenöstlichenösterreichischenAlpen.Arb.Inst.Geogr.Univ.
Graz,33,9Ͳ125.
LiebG.K.&SlupetzkyH.,1993:DerTauernfelckͲBlockgletscherimHollersbachtal(Venedigergruppe,Salzburg,
Österreich).Wiss.Mitt.NationalparkHoheTauern,1,138Ͳ146.
Pillewizer W., 1938: Photogrammetrische Gletscheruntersuchungen im Sommer 1938. Zeitschrift der
GesellschaftfürErdkunde,1938(9/19),367Ͳ372.
PillewizerW.,1957:UntersuchungenanBlockströmenderÖtztalerAlpen.GeomorphologischeAbhandlungen
desGeographischenInstitutesderFUBerlin(OttoͲMaullͲFestschrift),5,37Ͳ50.
SchneiderB.&SchneiderH.,2001:Zur60jährigenMessreihederkurzfristigenGeschwindigkeitsschwankungen
amBlockgletscherimÄusserenHochebenkar,ÖtztalerAlpen,Tirol.ZeitschriftfürGletscherkundeund
Glazialgeologie,37(1),1Ͳ33.
ShroderJ.F.,BishopM.P.,CoplandL.&SloanV.F.,2000.DebrisͲcoveredglaciersandrockglaciersintheNanga
ParbatHimalaya,Pakistan.GeografiskaAnnaler,82:17Ͳ31.
VietorisL.,1958:DerBlockgletscherdesäußerenHochebenkares.GurglerBerichte,1,41Ͳ45.
Vietoris L., 1972: Über die Blockgletscher des Äußeren Hochebenkars. Zeitschrift für Gletscherkunde und
Glazialgeologie,8,169Ͳ188.
76
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.6
RockGlacierLaurichard,NorthernFrenchAlps
Citationreference
SchoeneichP.,BodinX.,KrysieckiJ.ͲM.(2011).Chapter3.6:CasestudiesintheEuropeanAlps–Rock
Glacier Laurichard, Northern French Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and
geomorphic permafrost response to present and future climate change in the European Alps.
PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.77Ͳ86.
Authors
Coordination:PhilippeSchoeneich
Involvedprojectpartnersandcontributors:
Ͳ Institut de Géographie Alpine, Université de Grenoble, France (IGAͲPACTE) – Philippe
Schoeneich,XavierBodin,JeanͲMichelKrysiecki
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentgeomorphicandthermalevolution
3. Possiblefuturethermalanddynamicresponsetopredictedclimatechange
References
77
PermaNET–CasestudiesintheEuropeanAlps
Summary
The Laurichard rock glacier in the French Alps is monitored for surface displacements and
repeated geoelectrical soundings and tomographies since the 1980’s. The 25 years velocity
record,togetherwiththerepeatedgeoelectricalsurveysandgroundsurfacetemperaturerecord,
allows to draw some essential conclusions on the influence of climate on the behaviour and
evolutionofrockglaciers.Rockglaciersreacttoclimateandshowinterannualvelocityvariations.
Theirreactiontimeisthusmuchshorterthanpreviouslyassumed.Velocityvariationsarelinked
to temperature variations– an increase in temperature induces an increase in velocity. The air
temperature only partly explains the observed ground surface temperature and velocity
variations. The ground surface temperature shows the best link with velocity variations,with a
time lag of around one year. The snow cover explains most of the difference between air
temperatureandgroundsurfacetemperature,andthusappearsasthemaindrivingfactorboth
for ground surface temperatures and for velocity variations. Thus, the evolution of the
permafrost will not onlydepend on the air temperature, but will be strongly influenced by the
evolutionofthesnowcover,especiallyitsearlyorlateonsetinautumn.Alateonsetofthesnow
covercanatleastpartiallycompensateariseinairtemperature.
78
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
TheLaurichardrockglacierRGL1issituatedinthegraniticCombeynotmassifonaNorthfacingslope.
Itisawelldevelopedboulderyrockglacierwithdistinctcompressionridgesandasteepfrontaland
lateralslope(Fig.1).TheRGL1extendsfromtherootingzone(2650ma.s.l.)atthecontactwiththe
rockfaceto2450ma.s.l.atitsfrontandisadvancingontoHoloceneglacialandperiglacialdeposits.
Itis490mlong,between80and200mwide,andhasanapparentthickness(basedonthevertical
heightofthesidesandfront)of20Ͳ30m.Therockglacierhasathreesteppedlongitudinalprofile,
with moderate slopes in the upper part, a steep median part, and again a moderate slope in the
frontalpart.Itdisplaysmorphologicalfeaturestypicalofanactivelandform:longitudinalridgesinthe
centralsteeppartandasuccessionoftransverseridgesandfurrowsinthecompressivepartofthe
tongue(Table1).
Fig.1–TheLaurichardrockglacier.PhotographbyX.Bodin.
Table1–CharacteristicsoftheLaurichardrockglacier
Method
Latitude
Longitude
Elevation[ma.s.l.]
Slope
Aspect
Typeofrockglacier
Evidenceofpermafrost
Evidenceofmovement
Typologyofmovement
Meanvelocityrange
Changeinvelocity
Yearoffirstdata
initiated/carriedout
N45.0181°
E06.3997°
2440Ͳ2650m
Variable:moderateontopandtoe,steep(50%)inmiddlepart
North
talus;lobatetotongueshaped;active
Observationofgroundice,groundsurfacetemperature,geoelectric
Aerialphotograph,geodetic,Lidar
Velocitiychanges
From0.3to1.6m/yr
20%increase2000Ͳ2004,decrease2004Ͳ2006
(1979)1985
79
PermaNET–CasestudiesintheEuropeanAlps
2. Permafrostindicatorsandrecentgeomorphicandthermalevolution
2.1Methods
Movements havebeen measuredsince1979andregularlyrepeatedsince1985.Thusitrepresents
oneofthelongestdisplacementmeasurementrecordonarockglacierintheAlps.Classicalgeodetic
measurementsaremadeundersupervisionoftheParcNationaldesEcrinsonatransverseandona
longitudinallineofpoints,withaclassicaltotalstation.Thesurveywascarriedouteverytwotothree
yearsfrom1979to1999andsubsequentlyeveryyear.Fourmarkedblockswereaddedattheupper
end part of the longitudinal profile in 1999. Annual velocity (downslope, vertical and horizontal),
actual vertical change after removing total displacement of the block downslope and variation in
interͲblockdistancecanbecalculatedfromthesedata(Bodinetal.2009).Measuredvelocitiesrange
from0.2to1.6m/a.Thehighestvelocitiesaremeasuredinthesteepmedianpart(Fig.2).Compared
toothersurveyedrockglaciers,itcanbeconsideredasaratherfastmovingrockglacier.
Fig.2–DownslopemeanannualsurfacevelocitiesoftheLaurichardrockglacieralonglongitudinal
profile line L (1986Ͳ2006 or 2000Ͳ06). Grey band represents one standard deviation for each
measurementlocation(fromBodinetal.2009).
Geophysical investigations have been repeated regularly since 1986. In total 12 vertical electrical
soundings(VES)andsixelectricalresistivitytomography(ERT)profileshavebeenundertakenonthe
rockglaciertoinvestigateitsinternalstructure:twoVESin1986(Francou&Reynaud,1992),fiveVES
in 1998 (V. Jomelli & D. Fabre, unpublished work), four VES and two ERT in 2004, and one VES in
2006. All of the VES were carried out using the Schlumberger configuration and the results were
interpretedwithtwoorthreeͲlayeredresistivitymodels,whereasapoleͲdipoleconfigurationproved
tobethebestforERT.ThetwoERTprofilesweremeasuredagainin2007and2009.Theserepeated
measurementsallowsomeinterpretationsontheevolutionoftheicecontent.
Ground surface temperature (GST) measurements have been performed on the Laurichard rock
glaciersince2003,withsevenUTLminidataloggersburiedjustbelowtheblockysurfacetoprotect
themfromdirectsolarradiation.OneloggerisplacedoutsidetherockglacierinanonͲpermafrost
area,whereasthesixothersaredistributedoverthesurfaceofthelandform.Anautomatedweather
stationhasbeeninstalledin2004besidetherockglacier.Meteorologicaldatafromnearbystations
canbeusedinaddition
80
PermafrostResponsetoClimateChange
2.2Rockglaciervelocityvariation
OneofthetypicalcaractristicsoftheLaurichardrockglacierRGL1aresignificantvelocityvariations
all over the 25 years observation period. The rock glacier showed an increasing trend in flow
velocitiesfrom1985to1999,oscillationsaroundahighvelocityratefrom2000to2004,adecrease
from2004to2006,andagainamoderateincreasesince2007.Previousto2000,thevelocitychanges
aremoredifficulttointerpret,duetothenonͲannualmeasurements.Meanvelocitiesonperiodsof2
to3yearsdonotshowsignificantchanges,butthemeasurementintervalinducesasmoothingofthe
valuesthatpossiblyhidesmoresignificantinterannualvariations.
Thevelocitychangescanbecomparedtothemeanannualairtemperature(MAAT)usingthenearby
station of MonêtierͲlesͲBains (MeteoͲFrance), using a 12 month running mean (Fig. 3). The overall
picture shows a correspondence between the increasing temperature trend and the increasing
velocitytrendfrom1985to1999,thehighlevelofbothtemperatureandvelocitybetween2000and
2004, and the decrease in both temperature and velocity since 2004. This shows at least that a
generaldependenceofvelocityontemperatureseemstoexist.Whenlookingondetails,however,
thecorrespondenceappearstobelessevident.Before2000strongtemperaturevariationsarenot
expressedinthevelocitychanges,butasmentionnedabove,thiscouldbepartlyduetoasmoothing
ofthevelocitycurvebythemeasurementinterval.Between2000and2004,somevelocityvariations
appeartobeinvertedcomparedtotemperaturevariations.Thiscouldindicateeitheratimelagor
theinfluenceofotherparameters.
Fig.3–MeansurfacevelocityoftheLaurichardrockglacier(RGL1)and1ʍrange(greyband)from
1986Ͳ2006 (based on points L1ͲL3, L5ͲL8, L10ͲL12), and 12Ͳmonths running mean air temperature
anomaly(relativetothe1960Ͳ91average)attheMonêtierstation(MeteoFrancedata)(fromBodin
etal.2009).
Since2000velocityvariationscanbecomparedonanannualbasiswithgroundsurfacetemperature
records(usingadatasetfromValaisfortheperiodbefore2004).Thevelocitychangesshowagood
correspondence with the MAGST (mean annual ground surface temperature), averaged over the
previous 12 months. This shows that creep rates are strongly dependent on ground surface
temperatures,whichappearasthemaincontrollingfactorwithatimelagintheorderof1year(Fig.
4).
81
PermaNET–CasestudiesintheEuropeanAlps
Fig. 4 – Ground surface temperatures and rock glacier movement, 2000Ͳ06: mean surface velocity
(profileL)oftheLaurichardrockglacier(RGL1),andgroundsurfacetemperaturesonRGL1(2003Ͳ06,
12Ͳmonthsrunningmean,averageoffourdataloggers)andintheValaisregion(2000Ͳ06,12Ͳmonths
runningmean;westernSwissAlps;about2500ma.s.l.,datafromDelaloyeetal.,2008)(fromBodinet
al.2009).
2.3Evolutionofgroundsurfacetemperature
Ground surface temperatures (GST) show some deviations from the air temperature. The main
controllingfactorforgroundsurfacetemperatureappearstobethesnowcoverthickness,especially
inautumnandearlywinter.ThisiswelldemonstratedbytheGSTmeasurementseriesperformedat
Laurichardsince2003(fig.5,Schoeneichetal.2010).
Anearlyandsufficientlythicksnowcoverprotectsthegroundsurfacefromcoolingduringthecold
andshortdaysofNovemberͲDecember,whereasalateorshallowsnowcoverallowsastrongcooling
oftheground.Whenthesubsequentsnowcoveristhickenough,itsinsulationeffectpreservesthe
“thermal memory” during the whole winter, as is shown by the winter equilibrium temperatures
(WeqT)measuredinMarch.
Thus the ground surface can experience an average cooling even in warm years, if the snow cover
onsetislate,and/orifthesnowcoverremainsthin.Ontheotherhand,thecumulativeeffectofan
early snow rich winter preceded or followed by a hot summer is most efficient for inducing a
warmingofthegroundsurface.
2.4Evolutionoficecontentandstate
Repeated vertical electric soundings (VES) and electrical resistivity tomography (ERT) profiles show
an evolution of apparent resistivities measured on the rock glacier body. All data show the typical
profile expected on rock glaciers, with a moderately resistant surface layer corresponding to the
blockyactivelayer,ahighresistivemainlayercorrespondingtothepermafrostbody,andabasalless
resistivelayer.Thediscussionwillthusfocusondifferenceswithtime.
FoursuccessiveVESwereperformedonthetongue(1986,1998,2004,2006)andthreeattheroot
(1986, 1998, 2004). The accuracy of relocation of the 1986 sites is judged to be about 5m for the
lower one and 10m for the upper one. There was a general decrease in the maximum apparent
resistivity (ramax) at the VES sounding sites located at the root and on the tongue from 1986 to
2004Ͳ06(Fig.6).Attheroot(foraninterͲelectrodespacingAB/2=50m),ramaxdecreasedby35Ͳ50%
from8.105ɏ.min1986to3Ͳ4.105ɏ.m18yearslater.Atthetongue,ramaxdecreasedby20Ͳ50%cent
from5.104ɏ.min1986(AB/2=30m)to1.5Ͳ4.104ɏ.min2004(AB/2=20m).
82
PermafrostResponsetoClimateChange
Figure 5 – Ground surface temperatures measured on 5 locations on the Laurichard rock glacier
(2003Ͳ2009,runningmeanofthe12previousmonths).LA1isoutsideoftherockglacier,theothers
areonit.Theeffectofthesnowpoorwinters2004/05and2005/06isclearlyvisible,aswellasthe
cumulativeeffectofthehotsummer2006andthesnowrichwinter2006/07.
Fig. 6 – (a)Measured and modelled resistivity at the root (black curves and dots) and tongue (grey
curves and dots) of the Laurichard rock glacier in 1986 and 2004; (b) inverted models for the root
(top)andtongue(bottom)in1986and2004(fromBodinetal.2009).
83
PermaNET–CasestudiesintheEuropeanAlps
Therelativelylargevariationsinresistivityovertheperiod1998Ͳ2006suggestthatitmaybedifficult
todistinguishresistivitychangesduetolongͲtermmodificationofthepermafrost(e.g.athickening
oftheactivelayer,anincreaseingroundtemperature,adecreaseinicecontent)fromthoserelating
to seasonal changes in ground properties (e.g. differing water contents during the sounding
campaigns in the active layer and/or within the icy layer), and/or localised changes in the internal
structure related to permafrost deformation. Despite these limitations, the diachronic VES
measurementscanbeinterpretedusinginversionmodelstodepicthypotheticalverticalchangesin
structurescomposedofhomogeneoushorizontallayers(Figure6b).Takingintoaccounttheinfinity
ofsolutionsandthewellͲestablishedelectricalpropertiesofsimilargroundmaterials(Fabre&Evin
1990,Hauck2001,Delaloye2004),changesattherootcanbeinterpretedasbeingduetothickening
oftheactivelayerfrom1Ͳ2mto2Ͳ3mwithnonoticeablemodificationoftheicylayer.Incontrast,
thoseatthetonguecouldrepresentathickeningoftheactivelayerandalowericecontent,and/ora
thinningoftheicylayer.Theseresultsarelessreliable,however,duetostronglateralvariationsof
theinternalstructurewhicharenotidealforlayeredmodelling.
2.5LessonsfromtheLaurichardcase
The 25 years velocity record, together with the repeated geoelectrical surveys and ground surface
temperature record allows to draw some essential conclusions on the influence of climate on the
behaviourandevolutionofrockglaciers.
x
Rockglaciersreacttoclimateandshowinterannualvelocityvariations.Theirreactiontimeis
thusmuchshorterthanpreviouslyassumed.
x
Velocityvariationsarelinkedtotemperaturevariations–anincreaseintemperatureinduces
anincreaseinvelocity.
x
The air temperature only partly explains the observed ground surface temperature and
velocityvariations.
x
Thegroundsurfacetemperatureshowsthebestlinkwithvelocityvariations,withatimelag
ofaround1year.
x
Thesnowcoverexplainsmostofthedifferencebetweenairtemperatureandgroundsurface
temperature, and thus appears as the main driving factor both for ground surface
temperatureandforvelocityvariations.
Thus, the evolution of the permafrost will not only depend on the air temperature, but will be
stronglyinfluencedbytheevolutionofthesnowcover,especiallyitsearlyorlateonsetinautumn.A
lateonsetofthesnowcovercanatleastpartiallycompensateariseinairtemperature.
Severalopenquestionsremain,however.Themainquestionmaybehowtoexplaintheveryrapid
response ofvelocity to ground surface temperature. The rock glacier movement takes place in the
permafrostbodyandmainlyatitsbase.Thethermalconductivityofthepermafrostislowandthe
surfacetemperaturevariationsneedtimetodiffusethroughtheprofileandarestronglyattenuated
with depth. It seems unlikely that the temperature variations alone are sufficient to induce strong
velocity variations. Another factor could be the presence of liquid water percolating through the
permafrost body or at its base. This would mean that the velocity variations are controlled by the
amount of available liquid water. This would imply a permafrost temperature close to the melting
point.
Asimilarquestionarisesconcerningtheresistivitymeasurementsontherockglaciertongue.Thelow
resistivity measured in the VES are considered as typical for ice poor permafrost, and ERT profiles
suggest a discontinuous and ice poor permafrost body. Such interpretations however are
84
PermafrostResponsetoClimateChange
inconsistentwiththehighvelocityratesmeasuredonthetongue,whichimplyanicesupersaturated
permafrostbody.Theexplanationcouldbethepresenceofliquidwaterin“temperate”permafrost.
This means that the evolution of rock glacier permafrost with rising temperature could be
characterizedbyanincreaseofthepermafrosttemperaturetovaluesclosetothemeltingpoint,and
anincreaseofinterstitialliquidwaterduringthemeltingseason.
3. Possiblefuturethermalanddynamicresponsetopredictedclimatechange
TheresultsfromtheLaurichardrockglacierandformothersimilarcasesshowthat(i)thedynamic
response of rock glaciers will strongly depend on the thermal evolution of the permafrost and (ii)
thatthethermalresponsewilldependonthetemperatureevolutionaswellasontheevolutionof
winterprecipitationandsnowcoveronsetandduration.
Forgroundsurfacetemperature,thedirectinfluenceofthesnowcoveronsetdateandthicknessis
welldocumentedatLaurichard,andshowsastronginterannualvariability.Notemperatureprofileis
availableatLaurichard,butotherexistinglongtimeseriesshowanoverallwarmingtrendatca10m
depth(Permosreports).Sothemostprobablescenarioofthermalresponsecouldbethefollowing:
x
Warmingtemperatureswillinduceageneralwarmingtrendofthepermafrost.
x
Astronginterannualvariabilitywillcontinuetoexist,andcoolingperiodsofonetoseveral
yearswillcontinuetohappen.
x
The interannual variability depends mainly on the snow cover. Increased winter
precipitationscouldinduceastrongerwarmingofgroundsurfacetemperature,especiallyif
increasedprecipitationmeansearlieronsetofthesnowcover.
x
Anearliersnowmeltduetowarmerspringtemperatureswouldinduceawarmingofground
surfacetemperatures.
x
The thermal effect of increased amounts of melting water due to increased winter
precipitationisunknown.
The dynamic response of the rock glacier depends on the ice content, temperature and state. The
followingresponsescanbededucedfromtheobservations:
x
Thedecreaseobservedinelectricalresistivitywillpossiblycontinue,reflectingthepresence
of increasing amounts of water within the iceͲrock mixture. The amount of ice in the rock
glacierbodyisstillhigh,however,andshouldremainsoforalongtime.
x
Interannual velocity variations will continue to occur, in relation to ground surface
temperaturevariations.Velocityincreasesareexpectedespeciallyafterverywarmsummers
associatedwithsnowrichwinters.
x
ThegeomorphologicalsettingsoftheLaurichardrockglacierarenotfavourabletoastrong
acceleration, and a destabilization of the rock glacier is not expected. Due to its already
relativelyhighmeanvelocity,thispointhoweverneedstobemonitored.
Acknowledgements. – The study of the Laurichard rock glacier was supported by the Fondation
MAIF. The annual displacement measurements are performed by the Parc National des Ecrins. We
thankDenisFabreandAdrianoRiboliniforallowingtheuseofgeophysicialdata.
85
PermaNET–CasestudiesintheEuropeanAlps
References:
BodinX.,2007:Géodynamiquedupergélisoldemontagne:fonctionnement,distributionetévolution
récente. L’exemple du massif du Combeynot (Hautes Alpes). PhD thesis, University of ParisͲ
DiderotParis7.272pp.
BodinX.,ThibertE.,FabreD.,RiboliniA,SchoeneichP.,FrancouB.,Reynaudl.&FortM.,2009:Two
decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps.
PermafrostandPeriglacialProcesses,20,331Ͳ344.
DelaloyeR.,2004:Contributionàl’étudedupergélisoldemontagneenzonemarginale.PhDthesis,
UniversitédeFribourg.260pp.
Delaloye,R., Perruchoud, E.,Avian, M.,Kaufmann, V.,Bodin,X.,Ikeda,A., Hausmann,H.,Kääb,A.,
KellererͲPirklbauer,A.,Krainer,K.,Lambiel,C.,Mihajlovic,D.,Staub,B.,Roer,I.andThibert,
E.,2008:RecentInterannualVariationsofRockglaciersCreepintheEuropeanAlps.In:Kane,
D.L. and Hinkel, K.M. (eds), Proceedings, Ninth International Conference on Permafrost
(NICOP),UniversityofAlaska,Fairbanks,343Ͳ348.
Fabre D. & Evin M., 1990: Prospection électrique des milieux à très forte résistivité: le cas du
pergélisolalpin.6èmeCongrèsInternationaldeAIGI,Rotterdam.
FrancouB.&ReynaudL.,1992:Tenyearsofsurficialvelocitiesonarockglacier(Laurichard,French
Alps).PermafrostandPeriglacialProcesses3:209–213.
HauckC.,2001:Geophysicalmethodsfordetectingpermafrostinhighmountains.PhDthesis,VAW,
Zürich.204pp.
Schoeneich P., Bodin X., Krysiecki J.ͲM., Deline P. & Ravanel L., 2010: Permafrost in France. Report
N°1.PermaFrancenetwork,Grenoble,InstitutdeGéographieAlpine.
86
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.6
RockGlacierBellecombes,NorthernFrenchAlps
Citationreference
SchoeneichP.,KrysieckiJ.ͲM.,LeRouxO.,LorierL.,VallonM.(2011).Chapter3.7:Casestudiesinthe
European Alps – Rock Glacier Bellecombes, Northern French Alps. In KellererͲPirklbauer A. et al.
(eds): Thermal and geomorphic permafrost response to present and future climate change in the
EuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ
58Ͳ1,p.87Ͳ96.
Authors
Coordination:PhilippeSchoeneich
Involvedprojectpartnersandcontributors:
Ͳ Institut de Géographie Alpine, Université de Grenoble, France (IGAͲPACTE) – Philippe
Schoeneich,JeanͲMichelKrysiecki
Ͳ Association pour le développement de la recherche sur les glissements de terrain, France
(ADRGT)–LionelLorier,OlivierLeRoux
Ͳ Laboratoire de Glaciologie et de Géophysique del'Environnement, Université de Grenoble,
France(LGGE)–MichelVallon
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentgeomorphicandthermalevolution
3. Possiblefuturethermalanddynamicresponsetopredictedclimatechange
References
87
PermaNET–CasestudiesintheEuropeanAlps
Summary
TherockglacierBellecombesisashallowslowmovingrockglacier.However,surfacemovements
associated with settlement due to ice melting are sufficient to induce strong disturbance to a
chairliftstationbuiltonitssurface.Twoboreholesweredrilledthroughtherockglacier,revealing
atotalthicknessofca9.50m,butwithaveryiceͲrichlayer,6Ͳ7mthick,lyingdirectlyonbedrock.
The temperature profiles show a very stable and constant temperature of the iceͲrich layer
around Ͳ0.2°C, with almost no seasonal variation. The ground surface temperature shows cold
winterequilibriumtemperatures(downtoͲ4°C)andstrongseasonalvariationslimitedtotheiceͲ
poorblockysurfacelayer.Thetemperatureprofilearisesthequestionofthestatusoftheice:the
icetemperature,verycloseto0°C,couldindicatethattheiceisatthemeltingpointtemperature.
On the other hand, very high electrical resistivity values indicate low liquid water content, and
velocities show that no basal sliding is occurring so far. The question of the melting point
temperature of an iceͲrock mixture could be crucial for the future dynamic behavior of rock
glaciers like Bellecombes. More knowledge is needed on the physics of iceͲrock mixtures. One
dimensional modelling was run with different scenarios. Results show that the very iceͲrich
permafrost body seems to be very stable under present day conditions, and a strong warming
wouldbenecessarytoinducesignificantchangesiniceͲcontentandtemperature.
88
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
TheBellecombesrockglacierissituatedontheskiresortLesDeuxAlpes,intheEcrinsmassif,French
Alps(Table1).Itisashallow,topographicallysmoothrockglacier.It developsonaNorth oriented
slopefromca2800to2600ma.s.l.Thetwolastpylonsandtheupperstationofachairliftarebuilt
ontherockglacier.Duringconstructionwork,anicelayerof2Ͳ4mthicknesswasremovedunderthe
future chair lift station. Despite this, the chairlift station is subjected to settling movements,
indicatingthatthereisstillicebelowit.
The site has therefore been monitored since 2007 for ground surface temperature and surface
displacements. It has become a reference test site for various geophysical methods (geoelectrical
sounding and tomography, refraction and reflexion seismics, surface waves, seismic ground noise,
georadar).Twoboreholesweredrilledinautumn2009throughtherockglacierdowntothebedrock
andequippedwithsensorchainsfortemperatureprofilemonitoring.
Fig.1–TheBellecombesrockglacier.PhotographbyPhilippeSchoeneich.
Table1–CharacteristicsoftheBellecombesrockglacier
Method
Latitude
Longitude
Elevation[ma.s.l.]
Slope
Aspect
Typeofrockglacier
Evidenceofpermafrost
Evidenceofmovement
Typologyofmovement
Meanvelocityrange
Changeinvelocity
Yearoffirstdata
initiated/carriedout
N44.99°
E06.16°
2710m
moderate
North
talus;lobatetotongueshaped;active
Observation of ground ice, ground surface temperature, borehole
profile
Aerialphotograph,DGPS
Veryslowmovement
From0.03to0.10m/yr
Nosignificantchange
2007
2. Permafrostindicatorsandrecentgeomorphicandthermalevolution
2.1Groundsurfacetemperatures
Ground surface temperatures are monitored since 2007 with 4 UTLͲ1 mini data loggers (3 on the
rockglaciersurface,1outsideoftherockglacierinnonͲpermafrostterrain).Inaddition,severalBTSͲ
mappingcampaignswereperformedinlatewinter,inordertomapthegroundsurfacetemperature
distributionduringwinterequilibriumconditions.
89
PermaNET–CasestudiesintheEuropeanAlps
Fig.2–OrthophotooftheBellcombesrockglacier,andpositionofmonitoringdevices.
Theresultsshow:
x
A generally low winter equilibrium temperature on the rock glacier surface, with values as
lowasͲ4toͲ5°C.
x
A strong temperature contrast with the nonͲpermafrost area surrounding the rock glacier,
whereonlyslightlynegativetemperaturesarerecorded.Thiscontrastappearsontheloggers
aswellasontheBTSͲmaps.
x
TheBTSͲmappingshowsanalmostperfectmatchbetweenlowgroundsurfacetemperature
andgeomorphologicalextentoftherockglacier(fig.3).
Theseresultsclearlyindicatethepresenceofpermafrostontheentireareaoftherockglacier.
90
PermafrostResponsetoClimateChange
Fig.3–Groundsurfacetemperaturedistributionatwinterequilibrium,fromBTSͲmappinginMarch
2009(left)andsnowcoverthickness(right).Theleftmapshowsdistinctlimitsofthepermafrostzone,
consistentwiththegeomorphologicallimitsoftherockglacier.
2.2Rockglaciervelocity
ThesurfacedisplacementsaremeasuredwithDGPSon32pointsdistributedoverthesurfaceofthe
rockglacier.Theannualdisplacementvaluesareverylowonmostofthepoints,intheorderofafew
cm/a, at the accuracy limit of the measurement method. In addition to horizontal displacements,
verticalsettlementsareobservedatthechairliftstationandonthepylons.Thesemovements,inthe
orderofseveralmillimeters,aresufficienttoneedperiodiccablealignments.
2.3Icecontentandstratigraphy
Verticalresistivitysoudings(VES)andelectricalresisitivitytomography(ERT)wereperformedin2007
and 2009 on four profiles across the rock glacier. No significant changes have been observed
between2007and2009.AllERTprofilesshowveryhighresistivityvalues,typicalofhighicecontent.
Thishighicecontentwassubsequentlyconfirmedbytwoboreholes.
Bothdestructiveboreholesshowasimilarstratigraphy(fig.4):
x
Ontop,2.1mofdrydebris,correspondingtotheblockyactivelayer.
x
7.5m of very iceͲrich material. From the interpretation of the penetration logs and of the
cuttings, this layer can be subdivided on borehole SD1 into an upper iceͲrock mixture and
andaloweralmostpureicelayer,whereasinboreholeSD2thewholelayerismadeofaniceͲ
rockmixture.
x
Bedrock was reached in both boreholes at ca 9.5m depth. The iceͲrich layer lies in both
boreholesdirectlyonthebedrock.
91
PermaNET–CasestudiesintheEuropeanAlps
Fig.4–BoreholestratigraphyofthetwoboreholesatBellecombesrockglacier.
The boreholes confirmed the presence of very high ice content, as deduced from the ERT profiles.
However,thethicknessinterpretedfromtheERTprovedtobelargelyoverestimated,duetothevery
highresistivityvalues.ThisknowndrawbackoftheERTmethodlimitsitsuseforthedeterminationof
the thickness of permafrost bodies. Combined tests of several geophysical methods on the same
profiles show that only the georadar can possibly help to determine the real thickness of the
permafrostbody.
2.4Temperatureprofiles
Thetwoboreholeswereequippedwiththermistorchains(PT100sensors)connectedtoaloggerfor
temperatureprofilemonitoring.TheresultsofboreholeSD1areshowninfig.5.Theinfluenceofthe
icecontentonthetemperaturevariationsappearsveryobviously:
x
Strongseasonaltemperaturevariationsoccurwithinthe2mthickactivelayerwithalmostno
icecontent.
x
The seasonal temperature variations are drastically attenuated at ca. 2m depth, at the
boundarywiththeiceͲrichlayer.
x
Thezeroannualamplitudecanbesetatthetransitionfromfrozendebristomassiveice.
92
PermafrostResponsetoClimateChange
Fig.5–TemperatureprofileofboreholeSD1andevolutionfromNovember2009toJuly2011.
x
In the iceͲrich layer, as well as in the bedrock below, temperature variations are almost
absentorlimitedtoarangeof±0.1°C.
ThetemperatureoftheiceͲrichlayerisveryconstantandstable:
x
TheabsolutevalueisaroundͲ0.2°C,veryclosetothemeltingpoint.
x
Itshowsnotrendtowardsdepth,buttheprofileisveryshort(ca13mtotaldepth).
x
Variationsarelimitedtoaverynarrowrange.
2.5LessonsfromtheBellecombescase
The investigations on the Bellecombes rock glacier show the limits of geophysical methods for the
determinationoficebodythicknessandgeometry.Themostfavourablegeophysicalmethodusedin
permafrost, geoelectrical tomography (ERT), proves to strongly overestimate the thickness of the
permafrostbodyincaseofaveryhighicecontentinducingveryhighresistivityvalues.Thispointis
verycritical,astheknowledgeofthethicknessiscrucialforacorrectmanagementofgeotechnical
problemsliketheoneofthechairliftstation.Sofar,boreholesremainthebestmethodtoassessthe
stratigraphyofpermafrostbodies.
The most interesting aspect of the Bellecombes study case is the temperature profile of the
boreholes.Thevery“warm”temperaturesregisteredinthepermafrostbodycontrastwiththelow
winter equilibrium temperatures registered on the surface. Moreover, the values very close to 0°C
andtheirconstancywithdepthandstabilityintimeraisethequestionofthestatusoftheice:
x
Theconstancyoftemperatureintimeanddepthsuggeststhattheicecouldbeatthemelting
pointtemperature,similarto“temperate”glaciers.
x
However the values are still negative, and the consistency of the values on both sensor
chainsseemtoindicatethattheyarereliableandnotduetoalackofaccuracy.
Actually the physics of iceͲrock mixtures is poorly known, and the value of the melting point
temperatureinsuchamaterialisunknown.Itcouldbeslightlybelowzero,intherangemeasuredin
theBellecombesboreholes.Ontheotherhand,theveryhighresistivityvaluesindicatetheabsence
of liquid water in the ice body, and the very low displacement rates indicate that no basal sliding
occurs,likeitwouldbeexpectedincaseof“temperate”basalice.Thequestionremainsopenand
needsfurtherinvestigations.
93
PermaNET–CasestudiesintheEuropeanAlps
3. Possiblefuturethermalanddynamicresponsetopredictedclimatechange
Theknowledgeofthestratigraphyandofthegeophysicalpropertiesoftherockglacierbodyallowed
thecalibrationofathermaldiffusionmodel.Themodelwasrunforvarioustemperatureevolution
scenarios.Themodelusedisaonedimensionalmodelthatcalculatestemperatureandicecontentat
a spacing of 0.2m, and for time slices of 0.01 days. It uses as input the mean monthly air
temperatureandageothermalfluxof0.05watt.mͲ2.
Fig.6–LogofboreholeSD1andmodelsettingsforstructureandicecontent.
The ice content was estimated from the cuttings and the drilling progression graph, according to
figure6.Themodelcharacteristicsweresetwiththevaluesoftable2.
Table2–Intrinsicvaluesusedformodelcalculations
Thermalconductivity
Specificmass
Kw.mͲ1.°CͲ1
Ukg.mͲ3
Snow
0.20
300
Ice
2.10
900
Debris
0.50
1800
Bedrock
2.50
2600
Massicheat
CpJ.kgͲ1.°CͲ1
2009
2009
900
900
Themodelneedstosetameanairtemperatureaswellasprecipitation,andusesaclimaticscenario
todrivethemodel.Toavoiduncertaintiesrelatedtoaltitudinalgradientextrapolations,initialvalues
were taken from the meteorological station of SaintͲSorlin, situated ca 20 km North of the site, at
almost exactly the same altitude and a similar situation in the Alpine range: the mean annual air
temperature during the years 2006Ͳ2009 is Ͳ0.35°C, and the mean precipitation during the last 35
years is between 1 and 2m per year. For the variability, the history of deviations against mean
temperature and precipitation values measured at the station Chamonix from October 1959 to
September1994wastransferred.
Themodelwasrunforvariousscenarios.Themainresultsarethefollowingones:
94
PermafrostResponsetoClimateChange
x
Allscenarioswithameanannualairtemperature<Ͳ3°Candprecipitation>1mperyearlead
tothepersistenceofthesnowcoverandtotheformationofaglacier.Intheseconditions,
the ground ice volume doesn’t change and its temperature rises to the melting point. The
permafrostunderthepermanentsnowbecomestemperate.
x
WithameanairtemperatureofͲ0.5°Candaprecipitationof1mperyear,nothinghappens
within the first ten years. The snow cover, with a mean thikness of 1m in high winter
preventsthesoilfromcooling,andthehighicecontentabsorbstheheatflux.Underpresent
conditions,thepermafrostandicebodyseemstobestable.
x
Totesttheeffectofastrongandbrutalwarming,awarmingof5°Cwassetfromthesecond
model year, leading to a mean annual air temperature of 4.5°C. After three years, the ice
volumehasnotyetchanged,buthastotallydisappearedafter20years.Thiscorrespondsto
themeltingof150to200kg/m2/year.Thethermalequilibriumhoweverisstillnotreached
after30years,andthetemperatrureat20Ͳ30mdepthisstillcloseto0°C(figure7).Inthis
simulation,thewintersnowcoverisoftenverythin(0to1.5mdependingontheyear).
Fig7–BoreholeSD1.Left:initialstate,year1(MAATͲ0.5°C).Right:monthlygeothermsofyear32,10
yearsaftertotaldisappearanceofgroundice,31yearsaftersuddenwarmingof5°C.
Theresultsshowthat:
x
The high ice content totally explains the damping of seasonal variations at the activeͲ
layer/iceͲrich body transition. The latent heat transfer due to ice melting/freezing absorbs
almostthetotalheatflux.
x
Thesiteisstableunderpresentdayconditions.
x
In case of a progressive temperature rise, the heat flux increase would be almost totally
absorbedbylatentheatduringthefirstdecade,andneithericetemperaturewouldrisenor
significanticevolumelosswouldoccur.
95
PermaNET–CasestudiesintheEuropeanAlps
x
Significant changes would occur only after several decades or in case of a very strong
warming.
Thus,veryiceͲrichpermafrostcouldshowahighresistancetoclimatechange.However,themodel
run considered a melting point at 0°C and does not take into account the effect of possible melt
waterflows.
Acknowledgements. – The study of the Bellecombes Rockglacier was supported by the Fondation
MAIF.TheboreholeswerecoͲfinancedbytheRegionRhôneͲAlpesthroughtheCIBLE2008program.
TheskiresortDeuxͲAlpesfacilitatedtheworkandprovidedhelpforlogistics.
References:
Lorier L. et al., 2010: Analyse des risques induits par la dégradation du permafrost alpin. Rapport
final,projetFondationMAIF.ADRGT,Gières.
Schoeneich P., Bodin X., Krysiecki J.ͲM., Deline P. & Ravanel L., 2010: Permafrost in France. Report
N°1.PermaFrancenetwork,Grenoble,InstitutdeGéographieAlpine.
96
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.8
AiguilleduMidi,MontBlancMassif,FrenchAlps
Citationreference
DelineP.,CremoneseE.,DrenkelflussA.,GruberS.,KemnaA.,KrautblatterM.,MagninF.,MaletE.,
MorradiCellaU.,NoetzliJ.,PogliottiP.,RavanelL.(2011).Chapter3.8:CasestudiesintheEuropean
Alps–AiguilleduMidi,MontBlancmassif,FrenchAlps.InKellererͲPirklbauerA.etal.(eds):Thermal
and geomorphic permafrost response to present and future climate change in the European Alps.
PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.97Ͳ108.
Authors
Coordination:PhilipDeline
Involvedprojectpartnersandcontributors:
Ͳ EDYTEM, Université de Savoie, France (EDYTEM) – Philip Deline, Velio Coviello, Florence
Magnin,EmmanuelMalet,LudovicRavanel
Ͳ Regional Agency for the Environmental Protection of the Aosta Valley, Italy (ARPA VdA) –
EdoardoCremonese,UmbertoMorradiCella,PaoloPogliotti
Ͳ UniversityofBonn–AnjaDrenkelfluss,AndreasKemna,MichaelKrautblatter
Ͳ UniversityofZurich–StephanGruber,JeanetteNoetzli
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
97
PermaNET–CasestudiesintheEuropeanAlps
Summary
WedevelopinvestigationsattheAiguilleduMidi(3842ma.s.l),whererockwallsareofdiverse
aspectsandslopeangles,andgalleriesareaccessibleyearͲround.Intheframeworkoftheproject
PermaNET,wemonitortherockthermalregime(i)with9sensorswithonetothreethermistors
installeduptoadepthof55cm;(ii)withthree10mdeepboreholesequippedwiththermistor
chains; and (iii) by using Electrical Resistivity Tomography (ERT), based on the temperatureͲ
resistivityrelationshipofthelocalgranite.Thesemeasurementswerecompletedbytwomobile
automatic weather stations. Combined with a 3DͲhighͲresolution DEM made using longͲ and
shortͲrange Terrestrial Laser Scanning (for rockwalls and galleries, respectively), these data will
be used for physicallyͲbased model validation or construction of statistical models of rock
temperature distributionandevolution intherockwalls.Thesitestartedtobeinstrumentedin
2005,andsomemethodsarestillexperimental.Herewefocusonthethermalmonitoringdevice
installedonthesiteandpresentsomefirstresults.
98
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
Starting off in the framework of the EU coͲfunded FrenchͲItalian PERMAdataROC project and
presentlyunderdevelopmentwithintheprojectPermaNET,ourinvestigationsattheAiguilleduMidi
(N45°52',E6°53')beganinNovember2005.Wechoosethissite(Fig.1)becauseof(i)itselevation
(3842m a.s.l.), (ii) its steep rockwalls characterized by differents aspects, slope angles, rock
structures,andsnowcovers,and(iii)itsaccessibilitythroughouttheyearfromChamonixbyacable
car from 1955 – half a million tourists visit the site each year; rockwalls of the Piton central are
accessiblebyabseilingfromtheupperterrace,andgalleriesallowtopenetrateintotherockmass
whichisrareinhighmountainareas,andlede.g.toobserveasignificantcirculationofwaterduring
thehotSummerof2003,forthefirsttimesincetheopeningofthesite.AiguilleduMidihasbecome
amajorsiteforthestudyofrockwallpermafrostintheAlps.
A
B
C
D
Fig.1 TheAiguilleduMidi(3842ma.s.l.):(A)viewfromtheeast.Atthecenter:Pitoncentral;ontheright:
Pitonnord,withthecablecarstation.(B)westside(1000ͲmͲhigh).Atitsbottom:GlacierdesBossonsetGlacier
Rond;ontheleft,intheshadow:northsideofthegroupoftheAiguilleduMidi,mainlyglaciated.(C)underthe
pylon:subverticalnorthwestsideofthePitoncentral(100ͲmͲhigh).(D)Southeastside(200ͲmͲhigh).Ontheleft:
beginningoftheArêtedesCosmiques;ontheright:PilastresudͲest.PhotographsbyP.DelineandS.Gruber(A,
C,D:11.10.2005;B:30.09.2007)
99
PermaNET–CasestudiesintheEuropeanAlps
The group of the Aiguille du Midi, at the western end of the Aiguilles de Chamonix, develops
asymmetricallyover2kmbetweentheColduMidiandtheColduPlan(Fig.2).Itformsarockyscarp
whose west face and north face (which is glaciated on its upper half) are towering the Glacier des
Bossons (by 1000 m) and the Glacier des Pélerins (by 1350 m) respectively (Fig. 1B). However, the
back of this scarp is occupied by the western basin of Glacier du Géant, separated from west and
northfacesbytherockyArêtedesCosmiquesandthesummitoftheAiguilleduMidi.
ThebulkoftherockisgraniteofMontBlanc,amassiverockwithagrainedfaciesthatcontributesto
thesteepnessoftheAiguilledu Midifaces–50°forthenorthface,57Ͳ58°forthesoutheast(only
200mhigh)andwestsides.Manyrockwallswithinthesefacesaresubvertical,asthenorthfaceof
thePitoncentral(Fig.1C)orthePilastresudͲest(Fig.1D),becauseofthesubverticaldipofthetwo
mainfamiliesoffaultswhosedensenetworkcutsacrosstheMontBlancmassif.Becauseofadense
secondary fracturing unevenly distributed very massive rockwalls alternate with very densely
fracturedones(Fig.1D).OurstudyfocusesonthesummitoftheAiguilleduMidi,between3740and
3842ma.s.l.,heretermed“AiguilleduMidi”.
Fig.2GroupoftheAiguilleduMidi.TheinstrumentedsiteisthepeaklabelledAig duMidi.Detailofthemap
Mont Blanc n°1 NordͲAiguille du Midi (IGN, 1952) at 1:10000 (contour interval: 10 m). This extract is 4 km
large.
le
2. Permafrostindicatorsandrecentthermalevolution
2.1Methods
Rocktemperaturemonitoring
TherocksurfacetemperatureismeasuredeveryhouroverallfacesofthePitoncentralsince2005by
severalminiͲdataloggerswiththermistorsplacedatdepthsof3,10,30and55cmbelowthesurface.
Three 10m deep boreholes have also been drilled in September 2009 (Fig. 3), normal to the rock
100
PermafrostResponsetoClimateChange
surface of: (i) the northwest face (borehole at 3738m a.s.l.), a vertical rockwall in a very massive
granite;snowcanonlyaccumulateonasmall2mwideterrace;(ii)thesoutheastface(boreholeat
3745ma.s.l.),a55°slopeangleinahighlyfracturedareasnowcoveredduringapartoftheyear;and
(iii)thenortheastface(boreholeat3753ma.s.l.),witha65°slopeangleinaveryfracturedcouloir,
wheresnowoccursoveralargepartoftheyearduetotheconcavetopography.Theseboreholesare
located well below the cable car infrastructure level in order to minimize its thermal influence on
rock temperature. They are equipped with 10m long chains of 15 thermistors that measure rock
temperatureevery3hourssinceDecember2009onthenorthwestandsoutheastfaces,sinceApril
2010onthenortheastface.
Fig.3 Drillingofa10mdeepboreholeinthesoutheastfaceofPitoncentralinSeptember2009.Photograph
byP.Deline17.09.2009
Electricalresistivitytomography
Electrical Resistivity Tomography (ERT) is increasingly being used as a nonͲinvasive imaging tool in
alpine permafrost studies (Krautblatter & Hauck, 2007; Krautblatter et al., 2010). Key objectives of
thismethodare(i)themappingoftemperaturedistributionsinsidetherocktoinferthepresenceof
permafrost, and (ii) the delineation of fracture zones given their influencing role on permafrost
dynamics and stability. For the first purpose a preliminary relationship between temperature and
resistivity of the rock has been established in laboratory. The imaging of fractures, however, is a
notoriously difficult task using conventional ERT approaches which rely on smoothnessͲconstraint
regularization.AttheAiguilleduMidi,weinvestigateregularizationschemesforimprovedfracture
delineationbymeansofnumericalsimulationsandapplicationtofielddata.
101
PermaNET–CasestudiesintheEuropeanAlps
Since2008,fourERTsurveyswereconductedatthesite.Eachonecomprisedtheacquisitionofmore
than 10,000normal and reciprocal dipoleͲdipole data over three different arrays of altogether 144
electrodes. The electrodes of twoarrays could be placed to almost surround the Piton central and
the Piton nord in a horizontal plane, offering a favourable tomographic coverage. A vertical northͲ
southtransectacrossthePitoncentralwasinstalledbyabseilingonthenearverticalnorthandsouth
faces.TheERTdatawereinvertedusingisotropicsmoothing,anisotropicsmoothing,andafocussing
regularization scheme based on the soͲcalled minimumͲgradient support (MGS), and employing a
finiteͲelementgridwhichcapturestheirregulargeometryoftherockaswellastheelectrodelayout.
Airtemperaturemonitoring
AirtemperatureandrelativehumidityaremeasuredonsouthandnorthfacesbythemeanofminiͲ
dataloggersplacedinsideradiationshields.Onthesouthface,meteorologicalparameters(incoming
andoutgoingsolarradiationinbothshortwaveandlongwavebands,windspeedanddirection)were
measuredduringnearly4years(December2006toOctober2010)byanautomaticweatherstation
adaptedandinstalleddirectlyontherockwall.
TerrestrialLaserScanning
A DEM is necessary (i) to accurately represent the rock volume, (ii) as a basis for a geological
structureanalysis,(iii)torefinethemodelingofrocktemperaturedistribution,and(iv)tostudythe
water flow into the rock mass. A highͲresolution DEM was made using longͲ and shortͲrange
TerrestrialLaserScanning–forrockwallsandgalleries,respectively(Fig.4).
Fig. 4 Triangulated Irregular Network (TIN) model of the rockwalls of the Pitons nord (left) and central,
obtainedbylongͲrangeterrestriallaserscanning.
102
PermafrostResponsetoClimateChange
2.2 Preliminaryresultsaboutrocktemperature
All the subͲsurface data are collected mainly for initialization, calibration and validation of rock
temperature and permafrost distribution models. However their statistical analysis allows
quantifyingthegreatspatialvariabilityofsubͲsurfacetemperaturesinsuchcomplexmorphologies.
Preliminaryresults(Table1;Fig.5)showthat:(i)themeanannualgroundsurfacetemperaturecan
varyofmorethan6°Cwithinfewmetersofdistance,dependingontheaspect;(ii)freezeͲthawcycles
on southern aspect are nearly twice as frequent than in the north but markedly shallower; (iii) a
significantthermalͲoffsetprobablyexistsdespitethecompactrockmassandtheabsenceofground
covers(e.g.debris,snow)onsouthfaces.
Fig.5–MeandailyrocktemperatureonthesouthandnorthfacesofthePitonCentralforthehydrologicalyear
2008Ͳ09atthreedifferentdepthsbelowthesurface.
Table 1 – Rock temperature 55cm below the surface on south and north faces of the Piton Central of the
Aiguille du Midi for 2007Ͳ08, 2008Ͳ09, and 2009Ͳ10 hydrological years. MAGT: mean annual ground
temperature;MAX/MINabs:absolutelywarmestandcoldesttemperature;DateMAX/MINabs:occurrencedate
of MAX/MINabs; ȴTavg/max/min: mean, maximal and minimal amplitude of daily temperatures; ZCD: Zero
Crossing Days, i.e. number of days per year where the 0°CͲisotherm is crossed; MAX/MINday: warmest and
coldestmeandailytemperature;DateMAX/MINday:occurrencedateofMAX/MINday;DBZ:DaysBelowZero,
i.e.numberofdayswithmaximumtemperaturebelow0°C.
103
PermaNET–CasestudiesintheEuropeanAlps
Deeper borehole thermistor chains show a very sharp contrast between the three surveyed faces
(Fig.6). A time lag of approximately half a year between minimal and maximal air temperature
periods (JanuaryͲFebruary, and July, respectively) and minimal and maximal rock temperature
periodsatadepthof10m(JuneͲJuly,andDecemberͲJanuary,respectively;Fig.7).In2010,theactive
layerthicknessvariedfrom1.80minthenorthwestfaceto5.20minthesoutheastface.
While anisotropic smoothing can be adjusted such as to allow a correct interpretation of the ERT
image, inversion with MGSͲbased regularization provides most convincing results in terms of
resolvingsharpstructuralfeaturesassociatedwithlithologicalchangessuchasfractures,butatthe
sametimepreservingsmoothchanges typicaloftemperaturevariationsintherock.LowͲresistivity
zonescouldbedelineatedatthePitonnord,whichseemtocoincidewithwaterͲcontainingfractures
causedbyartificialheatsupply;continuationofthesefracturesoutsidetheheatedgalleryindicates
permafrost conditions. At the Piton central, resistivity values were below 200000:m in October
2010,whichisquitereasonablewithrespecttothetemperaturerange(Fig.8).
Meteorologicaldataontherockwallshowthat:(i)thepeakofSWradiationoccursduringthewinter
(>1300W/m2)givingstrongdailytemperatureamplitudesatrocksurface(upto30°C);(ii)thereisa
clear prevalence of upslope winds with speeds ranging from 4 to 9m/s; (iii) the mean annual air
temperature isaroundͲ7°Conaverage(Table2),with5to6°Cofdailyamplitudeandanabsolute
temperaturerangebetweenͲ25to+12°C.
Fig.6 Plotsofrocktemperaturefromthesurfaceto10mdepthfortheperiod18.12.2009to21.01.2011at
thenorthwestandsoutheastfaces,and13/04/2009to21/01/2011atthenortheastfaceoftheAiguilleduMidi
(continuednextpage)
104
PermafrostResponsetoClimateChange
Fig.6continued
105
PermaNET–CasestudiesintheEuropeanAlps
Fig.7Timelagbetweenairtemperatureand10mdeeprockatthesoutheast,northeastandnorthwestfaces
ofthePitoncentraloftheAiguilleduMidi.
Fig.8 Electrical resistivity tomography in a horizontal plane at the Piton central of the Aiguille du Midi on
22.10.2010.Blackdotsareelectrodelocations;blue/green:unfrozen;yellow:transitionfromunfrozentofrozen;
red:frozen;resistivityisintherange102.Ͳ105.0:m.Reliableresultsareonlyinsidethearcthatisenclosedby
the48electrodes.
106
PermafrostResponsetoClimateChange
Table2–AirTemperatureonthesouthface(A)andnorthface(B)ofthePitonCentraloftheAiguilleduMidifor
2007Ͳ08, 2008Ͳ09and 2009Ͳ10hydrological years.Meanannual air temperature(MAAT), frost days (FD), ice
days(ID)andfreezeͲthawdays(FTD)calculatedassuggestedinchapter2.Onthenorthface,hydrologicalyear
2007Ͳ08istheonlyonewithoutmissingdata.
(A)
South face
2007-08
2008-09
2009-10
Mean
(B)
North face 2007-08
MAAT (°C)
-6.77
-6.85
-7.33
-6.98
-7.53
FD (d)
352
336
335
341
353
ID (d)
246
241
249
245
275
FTD (d)
106
95
86
96
77
2.3 Outlook
Aiguille du Midi is the most elevated Alpine site to study permafrost in rockwalls. During the next
yearsnumericalmodellingofthetransient3Dsubsurfacetemperaturefields,combiningadistributed
energybalancemodelwitha3Dheatconductionscheme,willbeaccomplished(Noetzlietal.,2007;
Delineetal.,2009).Severalstatisticalmodelsofdistributionofsurfacetemperaturesoftherockwalls
begantobedevelopedfortheMontBlancmassif,butcomparingtemperaturedataattheAiguilledu
Midi with one of these models shows some discrepancies: whereas the Piton central north face
modeledtemperatureisintherangeofͲ7°toͲ13°C(Fig.9),itsmonitoredaveragetemperatureisca.
Ͳ6°C(Table1).
Fig.9 ModeleddistributionofrocksurfacemeanannualtemperatureintheMontBlancmassif(Frenchside)
with the model TEBAL (view from the west; image draping: E. Ployon). The temperature is in the range Ͳ1°C
(darkorange)toͲ13°C(darkblue);groupoftheAiguilleduMidi(northandwestsides)isdelimited.
107
PermaNET–CasestudiesintheEuropeanAlps
The combination of process understanding, statistical analyses and/or modelling (e.g. numerical
modelling of water flow in rock fractures) will help to improve our understanding of the
characteristics of the mountain permafrost degradation. Secondly, we are interested in how a
reduction in the uncertainty of data, process understanding and models may contribute to our
predictive skill of corresponding effects. This longͲterm monitoring and modelling approach at
Aiguille du Midi will be a strong support to take into account future thermal response of rockwall
permafrosttopredictedclimatechangeinthenext50yearsanditsgeomorphicconsequences.
3. Possiblefuturethermalresponsetopredictedclimatechange
Assuggestedinchapter2,frostdays,icedaysandfreezeͲthawdayshavebeencomputedusingthe
availableairtemperaturedatasetofthesouthfaceofAiguilleduMidi(Table2A).Referringtomaps
andpredictionsinchapter2,theairtemperaturemeasurementsconductedonbothsouthandnorth
facesoftheAiguilleduMidifrom2007to2010areinaccordancewiththemeansoftheperiod1961Ͳ
1990fortheGreatAlpineRegion(GAR).ThatisanumberofIDintherange241Ͳ260andanumberof
FDgreaterthan320.OnlythenumberofFTDisabovethemeaninthemeasurements(96vs.70/80
of the mean 1961Ͳ1990), probably because the sensor is placed on a south near vertical rockwall
wheredailytemperaturevariationsareverystrong,especiallyduringwinter.
Thepredictionsfortheperiod2021Ͳ2050inthestudyareaareadecreaseofIDrangingfromͲ13/Ͳ16
daysperyearthatmeans232Ͳ229IDinsteadof245,andadecreaseofFDrangingfromͲ14/Ͳ15days
peryearthatmeans326FDinsteadof341.Applyingthesescenariostothedataofthenorthface
(Table2B)thenumberofIDcouldfalltoabout260daysperyearthatmeansconditionsmoresimilar
to those observed today on the south faces. These changes could lead to a doubling of the active
layerthicknessofthenorthexposedrockwallsoftheAlpsinthefuture,withaconsequentlyincrease
ofinstabilitiesandrockfallevents.
Acknowledgements.–CompagnieduMontBlanc,especiallyE.Desvaux,areacknowledgedfortheir
assistance to our study at Aiguille du Midi. Participation of Chamonix Alpine guides M. Arizzi, L.
Collignon,andS.Frendo,andEDYTEMcolleaguesP.PaccardandM.LeRoy,totheSeptember2009
drillingwascrucialforitssuccess.ManythanksareduetoR.Bölhert,S.Jaillet,A.Rabatel,B.Sadier,
S.Verleysdonkfortheirhelpandcontributions.
References:
DelineP.,BölhertR.,CovielloV.,CremoneseE.,GruberS.,KrautblatterM.,JailletS.,MaletE.,MorradiCellaU.,
NoetzliJ.,PogliottiP.,RabatelA.,RavanelL.,SadierB.,VerleysdonkS.,2009:L’AiguilleduMidi(massif
du Mont Blanc): un site remarquable pour l’étude du permafrost des parois d’altitude. Collection
EDYTEM,8–CahierdeGéographie,135Ͳ146.
KrautblatterM.,Hauck,C.,2007:Electricalresistivitytomographymonitoringofpermafrostinsolidrockwalls.
JournalofGeophysicalResearch,112,F02S20,doi:10.1029/2006JF000546.
KrautblatterM.,VerleysdonkS.,FloresͲOrozcoA.,KemnaA.,2010:TemperatureͲcalibratedimagingofseasonal
changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze,
German/AustrianAlps).JournalofGeophysicalResearch,115,F02003.
NoetzliJ.,GruberS.,2009:TransientthermaleffectsinAlpinepermafrost.TheCryosphere,3,85Ͳ99.
NoetzliJ.,GruberS.,KohlT.,SalzmannN.,HaeberliW.,2007:ThreeͲdimensionaldistributionandevolutionof
permafrost temperatures in idealized highͲmountain topography. Journal of Geophysical Research,
112,F02S13.doi:10.1029/2006JF000545:
108
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.9
RockfallsintheMontBlancmassif,FrenchͲItalianAlps
Citationreference
DelineP.,RavanelL.(2011).Chapter3.9:CasestudiesintheEuropeanAlps–RockfallsintheMont
Blanc massif, FrenchͲItalian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.109Ͳ118.
Authors
Coordination:PhilipDeline
Involvedprojectpartnersandcontributors:
Ͳ EDYTEM,UniversitédeSavoie,France(EDYTEM)–PhilipDeline,LudovicRavanel
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
109
PermaNET–CasestudiesintheEuropeanAlps
Summary
The frequency and volumes of rockfalls as well as their triggering factors remain poorly
understoodduetoalackofsystematicobservations.IntheframeworkoftheprojectPermaNET,
this study case analyses inventories of rockfalls acquired in the whole Mont Blanc massif by
innovative methods in order to characterize the link between climate and rockfalls, and to
emphasizetheroleofpermafrost.Intwosectorsofthemassif,thecomparisonofphotographs
takensincetheendoftheLittleIceAgeallowedtheidentificationof50rockfalls.Inmostcases
these rockfalls occurred during the hottest periods. On another time scale, a network of local
observersallowedthedocumentationofthe139rockfallsthatoccurredin2007,2008and2009
in the central area of the Mont Blanc massif. Furthermore, the analyses of a satellite image
allowed the identification of 182 rockfalls in the whole massif at the end of the 2003 summer
heat wave. For most of those rockfalls, the permafrost degradation seems to be the main
triggeringfactor.
110
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
Arockfallcorrespondstothesuddencollapseofarockmassfromasteeprockwall,withavolume
exceeding 100m3. In the last two decades, many rockfalls and rock avalanches (volume > 0.1Ͳ
1×106m3) occurred from permafrost affected rockwalls throughout the world (Noetzli et al. 2003).
Rockfalls generally occur in hard rocks along preͲexisting fractures. In high mountains, three major
factors–possiblycombined–cantriggerrockfalls:(i)glacialdebuttressingduetoglacialretreat,(ii)
seismic activity, and (iii) permafrost degradation, generating physical changes of the potential
interstitialice(Gruber&Haeberli2007).
Thecharacterizationofrockfalleventsandtheunderstandingoftheirevolutionareprerequisitesto
anyresponseofmanagement.However,dataonrockfallsathighelevationarerareanditisdifficult
tointerpretnonͲrepresentativedata(fewisolatedexamples).
Started in the framework of the EU coͲfunded FrenchͲItalian PERMAdataROC project, our
investigations are presently carried out within the project PermaNET. In this context, we
systematicallycollectandprocesshistoricalandcurrentdataonrockfalls(Ravanel2010)inorderto
bettercharacterizethisprocess(triggeringconditions,frequency,andvolumes).
ThefirstaimofthisstudycaseistoshowthecorrelationexistingbetweenrockfallsintheMontBlanc
massifandglobalwarming.Thesecondoneistohighlighttheprobablycrucialroleofthepermafrost
degradationontherockfalltrigger.
2. Permafrostindicatorsandrecentthermalevolution
2.1Methods
PhotoͲcomparisonapproach
Written and oral evidences of rockfalls are not sufficient to accurately reconstruct the recent
rockwallmorphodynamics.ThephotoͲinterpretationofaseriesofphotographsisthereforethemost
appropriate method. We focus on two areas of the Mont Blanc massif with a rich existing
documentation:theWestfaceofthePetitDru(3730ma.s.l.)andthenorthsideoftheAiguillesde
Chamonix(3842ma.s.l.fortheAiguilleduMidi).TheproximityofthesepeakswithChamonix,their
morphologyandtheirsymbolismallowarichiconographysincetheendoftheLittleIceAge(LIA).
Thefirststepconsistsinsettingupdocumentarycorpus,whichisverytimeconsuming.Nearly400
photographsofthetwostudiedareashavebeengatheredbutonlyafewdozencouldfinallybeused.
Photographs are compared and interpreted in different steps: (i) delineation of the rockfall scars
(Fig.1),(ii)determinationoftheperiodscharacterizedbymorphologicalandcolourchangescaused
by rockfalls – it was often necessary to diversify and crossͲcheck information sources in order to
precisedatesofcollapse–,and(iii)estimationoftheinvolvedvolumes.50rockfallsoccurredinthe
twoareasduringtheperiodfromthe endof theLIAto2009,involvingrock volumesrangingfrom
500to265000m3(Fig.2;Ravanel&Deline2008,2011).
Networkofobservers,SPOTͲ5imageandGISanalysis
BesidestheinventoriesofpostͲLIArockfalls,itisimportanttocharacterizecurrentrockfalls.Onlya
structured network of observation coupled with fieldwork can allow a near completeness of the
inventoryofthecurrentrockfalls.
111
PermaNET–CasestudiesintheEuropeanAlps
Fig.1 Comparisonbetweenphotographsof1862and2009ofthewestfaceoftheGrandsCharmozandthe
Aiguille du Grépon, and of the north face of the Rognon des Grands Charmoz. Yellow ellipses indicate areas
affectedbyrockfallsbetweenthetwodates(Ravanel&Deline2011,slightlymodified).
The network consists of dozens of guides, hut keepers and mountaineers. Initiated in 2005, this
observernetworkbecamefullyoperationalin2007.FocusedonthecentralpartoftheMontBlanc
massif, the inventory is carried out with reporting forms, indicating the main characteristics of the
rockfallsandtheconditionsoftheaffectedrockwall.Animportantfieldworkisconductedeveryfall
inordertocheckandtocompletethereportedobservations.
Meanwhile, in order to compare the data obtained by the network with the exceptional
morphodynamicsofthethreemonth2003summerheatwave,the2003rockfallsweresurveyedon
thebaseofsupraglacialdepositsthroughtheanalysisofaSPOTͲ5imageoftheentiremassiftakenat
theendoftheheatwave(23.08.200,10:50GMT).
Characteristicsofeachcollapsearedeterminedusingseveralmethods.Altitudeofscars,slopeangle
and orientation of the affected rockwalls, and the deposit areas are calculated in a GIS. Because
directmeasurementsofthescarvolumeswerenotpossible,theareaofthedepositswasmultiplied
withanestimateoftheirthicknessesinordertoassessthecollapsedvolumes.Geologicalparameters
arederivedfromgeologicalmaps,andthepossiblepresenceofpermafrostwasdeterminedfroma
modelofmeanannualgroundsurfacetemperature.
Thenetworkofobserversallowedthedocumentationof45rockfallsin2007,22in2008and72in
2009(Fig.3),involvingrockvolumesrangingfrom100to33000m3(Delineetal.2008,Ravaneletal.
2010, Ravanel & Deline in press). Furthermore, the analysis of the SPOTͲ5 image allowed the
identificationof182rockfallsinthewholemassifattheendofthe2003summerheatwave(Fig.4;
Ravaneletal.2011).
112
PermafrostResponsetoClimateChange
Fig.2Locationofthe8scarsofthemain(outlines)andsecondary(stars)rockfallsatthewestfaceoftheDrus.
113
PermaNET–CasestudiesintheEuropeanAlps
Fig. 3 Rockfalls occurred in the Mont Blanc massif in 2007 (red dots), 2008 (yellow dots) and 2009 (green
dots).
2.2 Linkbetweenclimateandrockfalls
Todealwiththerelationshipsbetweenrockfallsandglobalwarming,wecomparedtheoccurrenceof
rockfalls at the Drus and the Aiguilles of Chamonix with available climate data – local and
reconstructed for the Alps. At the Drus, the climatic factor – especially the thermal one – seems
important in the triggering of rockfalls which occurred after the end of the LIA, as shown by their
occurrence during the hottest periods (Fig. 5; Ravanel & Deline 2008). The climate control is also
demonstrated by the analysis of the 42 rockfalls documented on the north side of the Aiguilles de
Chamonix during the same period, with a very strong correlation between rockfalls and hottest
periods.70%oftherockfallsoccurredduringthepasttwodecades,whichwerecharacterizedbyan
acceleration of the global warming. Heat wave periods are particularly prone to rockfalls: the
maximum rockfall frequency occurred during the 2003 summer heat wave (Ravanel & Deline in
press).
114
PermafrostResponsetoClimateChange
Fig.4 Locationofthe182rockfallsthatoccurredduringthehotsummer2003onthepanchromaticSPOTͲ5
satelliteimage051/257ofthe23.08.2003(Ravaneletal.2011,slightlymodified).
115
PermaNET–CasestudiesintheEuropeanAlps
Fig.5ChangesinChamonixmeansummertemperature,volumeandelevationofdocumentedrockfallsinthe
west face of the Drus (a fiveͲyear filter has been applied to remove interannual noise). Dotted quadrilaterals
representthedifferentrockfalls.
There is also correspondence between the 2003, 2007, 2008 and 2009 rockfalls and climatic
conditions of those years – in particular with temperatures (Fig. 6). 139 rockfalls have been
documentedbetween2007and2009inthecentralareaoftheMontBlancmassif,53ofthembeing
preciselydated(38%).Amongthem,51rockfalls(96%)occurredbetweenJuneandSeptember,i.e.
duringthehottestmonthsoftheyear.The2003summerheatwave,withapositiveMeanDailyAir
Temperature (MDAT) located at very high elevation, has generated extremely active
morphodynamics. In the area covered by the network of observers, with 152 rockfalls reported in
2003outofthe182observed,2003hasbeenquiteexceptionalintermsofrockfalloccurrence.Some
intensestormsduringsummer2003mayhavecausedhighfluidpressureinfracturesthattriggered
rockfalls,butthisfactorremainsdifficulttoassess.Finally,itisworthytonotethat38(72%)ofthe
53preciselydatedrockfallsof2007,2008and2009occurredafteraperiodofMDATwarmingofat
leasttwodays(Ravanel2010).
2.3 Theprobableroleofpermafrost
The role of climate – especially the one of the thermal factor – has been demonstrated by the
analysis of the rockfalls documented in the Mont Blanc massif. This relation can only be fully
explained by temperatureͲdependent factors: permafrost degradation, glacial debuttressing and
evolutionofice/snowcoveronrockwalls(cryosphericfactors).Thetwolastfactorsmayonlyexplain
a little part of the rockfalls. Furthermore, it is sometimes difficult to distinguish between rockfalls
linked to glacial debuttressing or to ice/snow cover retreat, and rockfalls due to permafrost
degradation,asbothfactorsareoftencloselyrelatedandfavouredbysummertemperatures.
Secondly, topographic factors are highlighting the importance of permafrost in rockfall triggering.
The average rockwalls elevation in the Mont Blanc massif is around 3000m a.s.l., whereas the
averageelevationofrockfallscarsof2003and2007Ͳ2009is3335ma.s.l.Althoughrockwallsarevery
commonbelow3000ma.s.l.,theyareaffectedbyveryfewcollapses.Themostaffectedaltitudinal
beltis3200Ͳ3600ma.s.l.,whichcorrespondstoareasof“warm”permafrost(closeto0°C,withfast
degradation).Moreover,observationsareconsistentwithpermafrostdistributionanditsevolution:
(i)thehotterthesummer,thehigherthescarelevations;(ii)asharpcontrastinthescarelevations
between north and south faces. Rockfalls occur more frequently in context of pillars, spurs and
ridges,particularlyaffectedbypermafrostdegradation.
116
PermafrostResponsetoClimateChange
Fig.6 MeandailyairtemperatureattheAiguilleduMidi(3842ma.s.l.)anddailytotalrainfallatChamonix
for the year 2009. Arrows indicate the days when one or several collapses occurred, with the value of
temperatureandrainfallforthesedays.
Finally,thepermafrostdegradationappearstobethemostlikelytriggeringfactorforseveralother
reasons(Ravanel2010):
x
x
x
x
x
Almostalloftherecordedrockfalls(98%)occurredinpossibleorprobablemodelledpermafrost;
Rockfallsoccurprimarilyduringsummertime,whichispronetopermafrostdegradation;
Massiveicewasobservedinatleast22scarsofthe2007Ͳ2009rockfalls;
Summer 2003 rockfalls were unusually numerous and could mainly be explained only by
permafrostdegradation(Gruberetal.2004);
For the largest identified rockfalls (e.g. June 2005 at the Drus), the formation of a deep thaw
corridorinthepermafrostmayhavepredisposedrockwallstocollapse.
WhenrockfallsinhighͲAlpinesteeprockwallsareconsideredindividually,the roleofpermafrostin
their triggering is difficult to establish. On the other hand, this role in the Mont Blanc massif is
strongly supported by the analysis of: (i) the 50 surveyed rockfalls (ranging in volume from 500 to
265000m3) at the west face of the Drus and on the north side of the Aiguilles of Chamonix since
1862;(ii) the182surveyedrockfalls(ranginginvolumefrom100to65000m3)inthewholeMont
Blancmassifattheendofthe2003summerheatwave;and(iii)the139surveyedrockfallsbetween
2007and2009inthecentralpartofthemassif(ranginginvolumefrom100to33000m3).
117
PermaNET–CasestudiesintheEuropeanAlps
3. Possiblefuturethermalresponsetopredictedclimatechange
Withintheglobalwarmingpredictionforthe21thcentury,rockfallsfromhighͲAlpinesteeprockwalls
areexpectedtooccurmorefrequently,withvolumesthatarelikelytoincrease.Thefrequencythatis
currently increasing should maintain the same trend in the next decades, due to the deepening of
theactivelayerasthetemperatureriseabove1800ma.s.l.intheAlpsforthe21thcenturywillbe
higher by nearly 1°C than the global one, as reported in chapter 2. Moreover, heat advection by
triggeringofwatercirculationatdepthalongthawcorridorswouldincreasethecollapsedvolumes.
Acknowledgements. – Alpine guides and hut keepers from Chamonix and Courmayeur who are
involvedintherockfallinventoryoftheMontBlancmassifsince2005arekindlyacknowledged.
References:
DelineP.,KirkbrideM.,RavanelL.,RavelloM.,2008:TheTréͲlaͲTêterockfallontotheglacierdelaLexBlanche
(MontͲBlancmassif,Italy)inSeptember2008.GeografiaFisicaeDinamicaQuaternaria,31,251Ͳ254.
GruberS.,HoelzleM.,Haeberli,W.,2004:PermafrostthawanddestabilizationofAlpinerockwallsinthehot
summerof2003.GeophysicalResearchLetter,31.L13504.doi:10.1029/2004GL020051.
GruberS.,HaeberliW.,2007:PermafrostinsteepbedrockslopesanditstemperatureͲrelateddestabilization
followingclimatechange.JournalofGeophysicalResearch,112.F02S18.doi:10.1029/2006JF000547.
NoetzliJ.,HoelzleM.,HaeberliW.,2003:MountainpermafrostandrecentAlpinerockͲfallevents:aGISͲbased
approachtodeterminecriticalfactors.Proceedingsofthe8thInternationalConferenceonPermafrost,
Zurich,Switzerland,827Ͳ832.
Ravanel L., 2010: Caractérisation, facteurs et dynamiques des écroulements rocheux dans les parois à
permafrost du massif du Mont Blanc. Thèse de Doctorat, Université de Savoie, Le Bourget du Lac,
France,322pp.
RavanelL.,DelineP.,2008:LafaceouestdesDrus(massifduMontͲBlanc):évolutiondel’instabilitéd’uneparoi
rocheusedanslahautemontagnealpinedepuislafinduPetitAgeGlaciaire.Géomorphologie,4,261Ͳ
272.
RavanelL.,DelineP.,2011:ClimateinfluenceonrockfallsinhighͲAlpinesteeprockwalls:thenorthsideofthe
AiguillesdeChamonix(MontBlancmassif)sincetheendoftheLittleIceAge.TheHolocene,21,357Ͳ
365.
Ravanel L., Deline P., in press: On the trigger of rockfalls in high alpine mountain. A study of the rockfalls
occurredin2009intheMontBlancmassif.ProceedingsoftheRockSlopeStabilityConference,Paris,
France.
RavanelL.,AllignolF.,DelineP.,GruberS.,RavelloM.,2010:RockfallsintheMontBlancMassifin2007and
2008.Landslides,7,493Ͳ501.
RavanelL.,AllignolF.,DelineP.,2011:LesécroulementsrocheuxdanslemassifduMontBlancpendantl’été
caniculairede2003.ActesduColloque2009delaSSGm,Olivone,Suisse,245Ͳ261.
118
3.
CasestudiesintheEuropeanAlps
3.10
CimeBianchePass,ItalianAlps
Citationreference
PogliottiP,CremoneseE.,MorradiCellaU.(2011).Chapter3.10:CasestudiesintheEuropeanAlps–
Cime Bianche Pass, Italian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.119Ͳ128.
Authors
Coordination:PaoloPogliotti
Involvedprojectpartnersandcontributors:
Ͳ Regional Agency for the Environmental Protection of the Aosta Valley, Italy (ARPA VdA) –
PaoloPogliotti,EdoardoCremonese,UmbertoMorradiCella
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
Reference
119
PermafrostResponsetoClimateChange
Summary
Cime Bianche Pass (45°55'N 7°41'E) is located at the head of the Valtournenche Valley in the
northeasterncorneroftheAostaValleyRegion(Italy)atanelevationof3100ma.s.l.Twoboreholes
ofdifferentdepth(6and41m)drilled30mapartindifferentmorphologicalconditionshavebeen
realized in 2005 and instrumented in 2006. The active layer thickness reflects the different snowͲ
coverconditionsofthetwoboreholes:inthedeepboreholeitisalmosttwicethevalueobservedin
theshallowone.Thetemperatureprofilesofthedeepboreholeallowtoidentifythedepthofzero
annual amplitude (ZAA) at ca. 17m. The mean permafrost temperature is about Ͳ1.36°C in this
depth. In the next future a probable decrease in the number of ID/year will strongly affect the
ground thermal regime leading to a thickening of the active layer, increasing water pressure and
permafrost degradation in the study area. All these changes will probably affect the spatial
distributionofthehydroͲgeologicalriskinsucharegion.
120
PermafrostResponsetoClimateChange
1.Introductionandstudyarea
Cime Bianche Pass (45°55'N 7°41'E) is located at the head of the Valtournenche Valley in the
northeast corner of the Aosta Valley Region at an elevation of 3100m a.s.l. (Fig. 1). The site is
characterized by bare fractured bedrock locally mantled by shallow coarseͲdebris deposits. The
lithologyismainlyconsistingofgarnetiferousmicaschistsandcalcschistsbelongingtotheupperpart
of the ZermattͲSaas ophiolite complex (Dal Piaz et al. 1992). Several gelifluction lobes, terracettes
andsortedpolygonsoccuronthedeposits.
A
B
Fig.1–Studyarea:(A)localizationofthestudyarea.(B)Siteoverviewandinstruments;intheforegrounda
GSTͲgridarea(fencedbytheyellowflags)andinthebackgroundfromrighttoleft:boreholesdataloggers,GSTͲ
grid datalogger, automatic weather station and related dataloggers. SkiͲlifts of the BreuilͲCervinia
ValtournencheZermattresortarevisibleinthebackground.
121
PermafrostResponsetoClimateChange
Thelocalclimatecanbedefinedasslightlycontinentalwithmeanprecipitationaround1000mm/a
(meanoftheperiod1931Ͳ1996attheLakeGoilletweatherstation,2540ma.s.l.,1.5kmfar,Fig.1AͲ
left).Themeanairtemperature(derivedfromPlateauRosàweatherstation(3480ma.s.l.,2kmfar,
Fig.1AͲright)isaboutͲ3.2°Cfortheperiod1951Ͳ2000(Mercallietal.2003).Themeanmonthlyair
temperaturesoverthesameperiodgivepositivevaluesonlyfromJunetoSeptember.Februaryisthe
coldestmonthandJulyisthehottestone.ThesiteisverywindyandmainlyinfluencedbynortheastͲ
northwestairmasses.Thecombinedeffectofirregularmorphologyandstrongwindactionleadtoa
highvariabilityofsnowcoverthicknesswithinfewmeters.
Thepermafrostmonitoringisperformedby:
x
Two boreholes of different depth (6 and 41m) drilled 30m apart in different morphological
conditions (Fig. 1A). The shallow borehole (SH) is drilled on a convex coarseͲdebris landͲform
highlysubjecttowinderosionwhichusuallyavoidstheformationofthicksnowcovers.Onthe
other hand the deep borehole (DP) is located in a depression where the snow tends to
accumulate,assuringasnowthicknessalwaysgreaterandmoredurablethanthoseobservedin
SH. Temperature measurements in the borehole started in January 2005 for the SH and in
August2008forDP.
x
A small GSTͲgrid area equipped with the purpose to quantify the spatial variability of surface
temperatureinasmallarea.Thegridhasanextensionof40x10mandisactivesinceJanuary
2005.TheGSTismeasuredat5nodes:4atthegridcornersand1inthecentreofthearea.In
each node the ground temperature is measured 2 and 30cm below the surface with hourly
frequency.Thesurfaceischaracterizedbycoarseblockymaterialslightlypendingandirregular
whichgivesgreatvariabilityofsnowcoveramongthenodes(Fig.1B).
The site is equipped with an automatic weather station for the measurement of snowͲdepth, air
temperature and relative humidity, wind speed and direction as well as radiation. The site is
accessibleallovertheyear,bycablecarandskiinwinterandbyoffͲroadvehicleduringsummer.
2.Permafrostindicatorsandrecentthermalevolution
2.1Meteorologicalrecords
Airtemperatureandsnowdeptharetheparametersthatmainlyaffectthegroundthermalregimein
permafrost environments (Zhang 2005). On the study site both parameters are measured in
correspondenceoftheSHborehole.
The Fig. 2A shows monthly air temperature anomalies calculated comparing the monthly means
measured at Cime Bianche Pass with longͲterm monthly means (1951Ͳ1998) derived from the
Plateau Rosà meteorological station. An extrapolation method based on monthly lapse rates was
usedtoshiftͲdownthelongͲtermdatasetfromtheelevationofPlateauRosàtoCimeBianchePass.
TheFig.2BshowsthemeansnowdepthoftheperiodNovember15thͲJune15thovertheboreholeSH
for3availablehydrologicalyears.
2.2ActiveLayerThickness
The active layer thickness reflects the different snowͲcover conditions of the two boreholes. The
combinedeffectofmorphologyandwindleadstothicksnowcoverabovetheDPboreholeandathin
snow cover above the SH. These morphological differences strongly affect the ground thermal
regime:itfollowsthatthethicknessoftheactivelayer(ALT),definedasthemaximumdepthofthe
0°CͲisotherm, in the deep borehole is almost twice the one observed in the shallow one. Table 1
summarizesthevaluesofALTofsomeyearsobtainedbylinearinterpolationamongthemeasured
temperaturesatdifferentdepths.
122
PermafrostResponsetoClimateChange
A
B
Fig.2–(A):monthlyairtemperaturesfrom2006to2009comparedwithalongtermmean(1951Ͳ1998)derived
fromPlateauRosaobservations.Theverticallinesgivethestandarddeviationofthelongtermmonthlymeans.
Red lines are the monthly means measured at Cime Bianche Pass. (B) mean seasonal snow depth above the
boreholeSHcalculatedovertheperiodNovember15thͲJune15th.
123
PermafrostResponsetoClimateChange
A
B
Fig.3–Maximumdailygroundtemperaturevs.timeintheSH(A)andDP(B)boreholes.Theblacklineisthe
0°CͲisotherm.NotethatyͲaxeshavedifferentranges.
124
PermafrostResponsetoClimateChange
Table1–Valuesofthemaximumactivelayerthickness(ALT)inthetwoboreholesatCimeBianchePassand
dayoftheyearinwhichthevaluehasbeenreached.
ActiveLayerThickness(ALT)(m)
Shallow
Deep
Borehole
Borehole
3.12
Ͳ
2.36
Ͳ
1.9
3.9
2.8
4.85
Hydrological
Year
2005/2006
2006/2007
2007/2008
2008/2009
OccurrencedayofmaximumALT
Shallow
Deep
Borehole
Borehole
th
October7
Ͳ
th
October11
Ͳ
September30th
September27th
th
th
October22
October17
Comparingthecontourplotsofbothboreholes(Fig.3)withthesnowͲdepthmeasuresofFig.2B,a
goodcorrelationbetweenthemeanseasonalsnowdepthandtheactivelayerthicknesscanbeseen.
The difference in the active layer thickness from 2008 to 2009 in both boreholes shows the same
behaviour: 2009 maximum depth has an increase of about 1m compared to 2008, due to the
exceptionalsnowfallsofthewinterseason2008/09whichleadtoimportantsnowcoverthroughout
thewinteronbothboreholes.
2.3PermafrostTemperature
Thetemperatureprofilesofthedeepboreholeallowtoidentifythedepthofzeroannualamplitude
(ZAA)ataround17m.ThemeanpermafrosttemperatureatthisdepthisaboutͲ1.36°C(Fig.4A).The
thermalͲoffset,definedinaccordancetoRomanovsky&Osterkamp(1995)asthedifferencebetween
TTOP (mean annual permafrost surface temperature) and MAGST (mean annual ground surface
temperature), seems quite variable from year to year. The available values for both boreholes are
reportedinTable2.
Table 2 – Values of thermalͲoffset in the boreholes. MAGST is calculated using the node at Ͳ2cm from the
groundsurface.TTOPiscalculatedatthedepthofALT(Table1)bylinearinterpolationamongthemeanannual
temperaturesofthefirstnodeaboveandfirstnodebelowtheALTvalue.
ShallowBorehole
Hydro.Year
DeepBorehole
MAGST
(°C)
TTOP
(°C)
ThͲOffset
(°C)
MAGST
(°C)
TTOP
(°C)
ThͲOffset
(°C)㩷
'08Ͳ'09
Ͳ0.05
Ͳ0.73
Ͳ0.67
Ͳ0.01
Ͳ0.81
Ͳ0.8
'09Ͳ'10
Ͳ1.1
Ͳ1.24
Ͳ0.14
Ͳ1.17
Ͳ1.23
Ͳ0.05
Fig.4showstheboreholetemperatureprofilesatspecificdaysoftheyear.Meandailytemperature
profileof1stAprilarerepresentativeofgroundtemperaturesattheendofthewinterseasonwhile
thoseof1stOctoberarerepresentativeofgroundtemperaturesattheendofthehydrologicalyear
neartheoccurrenceofthemaximumALT.
The effect of different snow amount during the winter season is clearly reflected in the 1st April
profiles of borehole SH. The profiles differ very much from each other with the colder ones
corresponding to the less snowy years. The great differences at the end of the winter are
systematically levelled during the spring/summer period, indeed the 1st October profiles differ less
from each other. From the beginning of the measures the hydrological year 2007/08 shows the
coldestgroundtemperatureprofilesandshallowerALT(Table1).Thisresultsfromacombinationof
125
PermafrostResponsetoClimateChange
scarce snow accumulation and summer air temperature around the mean (Fig. 2). In contrast the
seasonswhichshowwarmergroundtemperatureprofilesanddeeperALTarethosewithabundant
snowduringthewinterandairtemperatureabovethemeanduringthewinterͲsummerperiod.This
ismainlytrueforthehydrologicalyear2008/09whilein2005/06thequitecoldgroundtemperature
profile of April is completely overhung by the extremely warm spring/summer 2006. All these
considerationssuggestthatevenifwinterconditionsarestronglyfavourabletogroundcoolingthey
are often not enough to restrain the effect of very hot springͲsummer conditions on ground
temperatures.
A
B
Fig.4–GroundtemperatureprofilesovertheSH(A)andDP(B)boreholesatspecificdaysattheendofwinter
andsummerseasons.
126
PermafrostResponsetoClimateChange
3.Possiblefuturethermalresponsetopredictedclimatechange
As suggested in chapter 2, frost days (FD), ice days (ID) and freezeͲthaw days (FTD) have been
computed using the air temperature dataset of the Cime Bianche Pass over the available years of
observation(Table3).
Table3–Frostdays(FD),IceDays(ID)andFreezeͲThawDays(FTD)occurrenceattheCimeBianchesiteduring
the available hydrological years (October 1stͲNovember 30th). The last column reports the mean value of the
period.
2006/07
2007/08
2008/09
2009/10
Mean
MAAT
(°C)
Ͳ1.73
Ͳ3.01
Ͳ3.4
Ͳ3.75
Ͳ2.97
FD
275
284
275
282
279
ID
149
202
198
201
187.5
FTD
126
82
77
81
91.5
Referringtothemapsandpredictionsofchapter2,theairtemperaturemeasurementsconductedat
Cime Bianche Pass from 2006 to 2010 are in accordance with the means of the period 1961Ͳ1990
computed for the Great Alpine Region (GAR). That is a number of ID in the range of 261Ͳ280, a
numberofFDintherangeof181Ͳ200andanumberofFTDintherangeof80Ͳ90.Thepredictionfor
the period 2021Ͳ2050 in the study area are a decrease of ID ranging from Ͳ15/Ͳ16 days/year that
means172IDinsteadof187andadecreaseofFDrangingfromͲ15/Ͳ16days/yearthatmeans264FD
insteadof279.
Comparing the data of Table 3 and plots of Figure 3 year by year, it is evident that the air
temperature is not the only factor controlling the ground temperatures. In fact, as already
highlighted,thesnowcoverplaysakeyrole.Despitethis,lookingatthehydrologicalyear2006/07a
clear correlation between warmer air temperature and deeper ALT exists. Looking at table 3 it is
interesting to note that the number of ID is the most affected value by this anomalous winter.
ProbablyafuturedecreaseinthenumberofID/yearwillstronglyaffectthegroundthermalregime
leadingtoathickeningoftheALT,increasingwaterpressureandpermafrostdegradation.Allthese
changeswillprobablyaffectthespatialdistributionofthehydrogeologicalriskinsucharegion.
References:
Dal Piaz G. et al., 1992: Le Alpi dal Monte Bianco al Lago Maggiore. Guide Geologiche Regionali a cura della
SocietàGeologicaItaliana,3/II,211pp.
MercalliL.,CastellanoC.,CatBerroD.,DiNapoliG.,MontuschiS.,MortaraG.,RattiM.&GuindaniN.,2003:
AtlanteClimaticodellaValled'Aosta.EditionsSMS,405pp.
ZhangT.,2005:Influenceoftheseasonalsnowcoveronthegroundthermalregime:anoverview.Reviewof
Geophysics,43:RG4002.
127
PermafrostResponsetoClimateChange
RomanovskyV.E.&OsterkampT.E.,1995:Interannualvariationsofthethermalregimeoftheactivelayerand
nearͲsurfacepermafrostinnorthernAlaska.PermafrostandPeriglacialProcesses,6,313Ͳ335.
128
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.11
Maroccarorockglacier,ValdiGenova,ItalianAlps
Citationreference
SeppiR.,BaroniC.CartonA.,Dall’AmicoM.,RigonR.,ZampedriG.,ZumianiM.(2011).Chapter3.11:
CasestudiesintheEuropeanAlps–Maroccarorockglacier,ValdiGenova,ItalianAlps.InKellererͲ
PirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponsetopresentandfutureclimate
changeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲlinepublicationISBN
978Ͳ2Ͳ903095Ͳ58Ͳ1,p.129Ͳ139.
Authors
Coordination:RobertoSeppi
Involvedprojectpartnersandcontributors:
Ͳ UniversityofPavia–RobertoSeppi
Ͳ UniversityofPisa–CarloBaroni
Ͳ MountainͲeeringsrl–MatteoDall’Amico
Ͳ UniversityofTrento–RiccardoRigon
Ͳ GeologicalSurvey,AutonomousProvinceofTrento–GiorgioZampedri
Ͳ Geologist–MatteoZumiani
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalandgeomorphicevolution
3. Possiblefuturethermalandgeomorphicresponsetopredictedclimatechange
References
129
PermaNET–CasestudiesintheEuropeanAlps
Summary
In2001westartedatopographicstudyonanactiverockglacier(namedMaroccarorockglacier,
acronym MaRG, coordinates: 46° 13’ 06” N, 10° 34’ 34” E) located in the AdamelloͲPresanella
massif(CentralItalianAlps).Since2004,alsothenearͲsurfacegroundtemperaturewasmeasured
usingaminiaturedatalogger.Ourdatashowthatineightyears(2001Ͳ2009)MaRGhasmoved
downslope with average velocities ranging from 0.02 to 0.21m/year. The velocity reaches a
maximuminthemiddleandthelowerpartoftherockglacier,anddecreasestowardstheupper
sector,wherethesurveyedbouldersarealmoststationary.Aconsiderabledifferentvelocityfrom
year to year has been observed, but no clear trends seem to emerge from the mean annual
displacement rate. On the rock glacier the evolution of the ground temperature since 2004 is
directlyassociatedwiththeairtemperatureandthesnowconditions,intermsofthicknessand
durationofthesnowpack.Thegroundhaswarmedsignificantlybothin2007,afteraverymild
and little snowy winter, and in 2009, after a cold but exceptionally snowy winter. The
displacement rate of MaRG seems to rapidly react to the ground temperature variations,
apparently without any time delay. The exceptionally snowy winter 2008/09 seems to have
playedasignificantroleonthedisplacementrate,causingagroundtemperatureincreaseand,
probably,anincreaseinvelocity,whichreacheditsmaximuminthatyear.
130
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
IntheAdamelloͲPresanellaGroup(CentralItalianAlps),anactiverockglacier(MaRG)locatedinVal
Genova has been selected for carrying out multitemporal topographic surveys (Fig. 1). The
measurements aim at studying its surface displacement rate and its dynamic behaviour. The
displacement rates of the rock glacier are compared with the nearͲsurface thermal regime of the
ground and with the major climatic parameters, in order to investigate the potential relationships
betweenitsdynamic behaviourandthelocalclimaticconditions.Thisrockglacierisincludedinan
inventory published by Baroni et al. (2004), in which it has the number 41 and is also briefly
described.
Fig.1–GeographicalsettingofthestudyareawithrockglacierMaRGandautomaticweatherstations(AWS)
The topographic measurements started in 2001 and have been repeated in late summer of the
followingyears(2002,2004,2006,2007,2008and2009).Ontherockglaciersurface,amonitoring
networkof25largebouldersmarkedwithsteelboltshasbeenestablishedandalasertheodolitehas
beenusedforperformingthesurveys.FormonitoringthenearͲsurfacetemperatureoftheground,a
miniaturetemperaturedatalogger(UTL1,accuracy:±0,25°C;Hoelzleetal.1999)hasbeenplacedin
2004 few centimetres below the surface, in a place were fineͲgrained material outcrops. Detailed
meteorologicaldata(i.e.airtemperatureandsnowthickness)coveringthefullmonitoringperiodare
available from two highͲaltitude automatic weather stations (AWS) located near the studied rock
glacier(CimaPresena,3015ma.s.l.,andCapannaPresena,2730ma.sl.).
MaRGisatongueͲshaperockglacier,about280mlongand100mwide.Itfacessouthwestandits
lowerpart(topedgeofthefrontalslope)reachesanaltitudeof2760ma.s.l.(Fig.2).Thesurfaceof
MaRGdoesn’tdisplaythetypicalmorphologicalfeaturesofactiverockglaciers,suchaslongitudinal
and transversal ridges, furrows and hollows. MaRG is composed of talus material coming from the
shatteredrockwallssituatedabove,andnofieldevidencesofLittleIceAgeglaciationarepresentin
131
PermaNET–CasestudiesintheEuropeanAlps
its rooting area. It is almost completely covered by large and very angular boulders (from few
decimetrestosomemetersindiameter),andfineͲgrainedrockmaterialoutcropsonlyonthesteep
frontalandlateralslopes.AccordingtothedefinitiongivenbyBarsch(1996),MaRGcanbedefinedas
atalusrockglacier.
Fig. 2 – General view of MaRG. The elevation at the front is about 2760m a.s.l., the highest peaks in the
backgroundreachelevationsofabout3000ma.s.l.PhotographybyR.Seppi(21.08.2009)
On this rock glacier, BTS measurements carried out in late March 2003 recorded very cold
temperatures,consistentwiththepresenceofafrozencoreintothedebrisdeposit.TheBTSvalues
rangedbetweenͲ2.1°CandͲ6.1°C(averagevalueof23measurementpoints:Ͳ4.2°C)andtheaverage
thicknessofthesnowpackwas230cm.Thetemperatureofaspringemergingfromthebottomof
thefrontalslopeisalsoundermeasurementssince2004.Thewatertemperaturemeasuredduring
thelatesummerseasonisconstantlybelow1°C,indicatingfurthermorethepresenceofpermafrost
intherockglacier.
2. Permafrostindicatorsandrecentthermalandgeomorphicevolution
Fig. 3 shows the total horizontal displacement of MaRG in the full period of measurements (2001Ͳ
2009).Onthisrockglacier,thetotaldisplacementrangesbetween0.12m(boulder19)and1.67m
(boulder2),correspondingtoavelocityof0.02and0.21m/year,respectively(Table1).Thesurveyed
boulders moved along the maximum gradient of the slope in a rather homogeneous pattern. The
velocity reaches a maximum in the middle and the lower part of the landform, and decreases
towardstheuppersector,wheretheslowestboulders(18,19and20)arelocated.Afterthesecond
survey(2002)theboulder3felldownfromthefrontalslope.
132
PermafrostResponsetoClimateChange
The mean displacement of MaRG in all the measurement intervals is shown in Fig. 7 (top graph),
where all the surveyed boulders of the rock glacier have been taken into account. The average
velocity is significantly variable from year to year, ranging from a minimum of 0.08m/year (2007Ͳ
2008) to a maximum of 0.17m/year (2008Ͳ2009). No clear trends seems to emerge from the
evolution of the mean annual displacement. The interannual variability of the velocity and an
acceleratingtrendhavebeenrecentlyreportedforseveralrockglaciersintheEuropeanAlps(Roeret
al.2005,Delaloyeetal.2008,PERMOS2009,Bodinetal.2009).
Table 1 – Horizontal displacements of MaRG. The first six columns show the displacement for each period of
measurements,thecolumnseventhetotaldisplacement,andthecolumneighttheannualdisplacementrate.
(*)Measurementperiodoftwoyears;(**)Thebouldernumber3fellfromthefrontalslopeafter2002.
Boulder
ID
Horizontaldisplacement(m)
2001Ͳ09
total
horizontal
displacement
(m)
2001Ͳ09
horizontal
displacement
rate
(m/yr)
2001Ͳ02
2002Ͳ04(*)
2004Ͳ06(*)
2006Ͳ07
2007Ͳ08
2008Ͳ09
01
0.16
43.2
27.6
0.21
0.08
0.22
1.38
0.17
02
0.21
51.9
34.1
0.24
0.11
0.25
1.67
0.21
03(**)
0.20
.
.
.
.
.
.
.
04
0.18
47.4
29.7
0.20
0.11
0.24
1.50
0.19
05
0.17
43.6
26.2
0.17
0.12
0.23
1.38
0.17
06
0.17
46.6
26.5
0.20
0.09
0.25
1.44
0.18
07
0.16
44.2
25.3
0.18
0.08
0.23
1.34
0.17
08
0.15
35.9
22.0
0.12
0.10
0.18
1.13
0.14
09
0.11
25.9
14.6
0.06
0.06
0.12
0.77
0.10
10
0.17
46.7
24.9
0.18
0.10
0.24
1.41
0.18
11
0.16
45.0
22.9
0.17
0.08
0.21
1.31
0.16
12
0.15
37.1
20.8
0.14
0.08
0.19
1.13
0.14
13
0.16
40.9
23.9
0.16
0.08
0.21
1.26
0.16
14
0.13
27.2
16.3
0.07
0.08
0.15
0.87
0.11
15
0.15
34.0
19.2
0.11
0.08
0.19
1.05
0.13
16
0.13
30.6
16.4
0.11
0.06
0.17
0.94
0.12
17
0.08
12.6
5.4
0.07
0.0
0.07
0.39
0.05
18
0.08
5.6
4.4
0.0
0.04
0.04
0.22
0.03
19
0.07
2.0
1.8
0.01
0.0
0.03
0.12
0.02
20
0.08
Ͳ0.5
2.1
0.02
0.0
0.04
0.14
0.02
21
0.05
10.8
8.3
0.06
0.0
0.07
0.35
0.04
22
0.09
19.9
10.6
0.11
0.02
0.09
0.61
0.08
23
0.12
29.7
14.3
0.12
0.06
0.15
0.88
0.11
24
0.15
38.0
20.6
0.16
0.08
0.19
1.17
0.15
25
0.10
21.2
9.0
0.10
0.01
0.10
0.61
0.08
ThenearͲsurfacetemperatureofthegroundrecordedonMaRGfromAugust2004toAugust2009is
showninFig.4(bottomgraph).Inthisfigurethegroundtemperature(dailymean)isassociatedto
theairtemperature(centralgraph)andtothethicknessofthesnowcover(topgraph),recordedat
two meteorological stations located about 1 km from the rock glacier (Cima Presena AWS and
CapannaPresenaAWS).
Focusing on the ground thermal regime during winter, the coldest temperatures were recorded in
the 2004Ͳ2005 and 2005Ͳ2006 winter seasons. During the first winter, the ground reached a
minimumtemperatureofaboutͲ10°CinlateFebruary,andastrongwarmingfollowedinMarchdue
133
PermaNET–CasestudiesintheEuropeanAlps
to an early starting of the snow melt. In the winter of 2005Ͳ2006, the ground cooled very quickly
towardsthe minimumvaluesofaboutͲ8°C.Thestrongcooling ofthegroundinthese twowinters
maybeduetothecombinedeffectofcoldairtemperatureandrelativelythinsnowpackinautumn
andearlywinter.Inthetwofollowingwinters,thegroundtemperaturewaswarmerandreacheda
phaseofwinterequilibriumtemperature(WEqT)ofaboutͲ5°C.Thewinter2006Ͳ2007wasverymild
and the snowpack was relatively thin until mid winter, while the following winter was colder and
snowier.
Fig.3–Totalhorizontaldisplacement(2001Ͳ2009)ofMaRG.
Fig.4–Topandmiddlegraphs:snowthicknessandairtemperatureatCapannaPresenaautomaticweather
station; bottom graph: ground nearͲsurface temperature from August 2004 to August 2009 for MaRG. For
locationoftemperaturedataloggerrefertoFig.3.
134
PermafrostResponsetoClimateChange
Withrespecttothepreviousyears,thegroundtemperaturewascomparativelywarmerduringthe
2008Ͳ2009winterseason,andreachedarelativelyshortWEqTofaboutͲ4°C.Althoughinthiswinter
theairtemperaturewasnotparticularlymildcomparedtotheprecedingones,thesnowpackalready
reached a significant thickness in autumn and early winter, preventing the cooling of the ground.
Moreover, the snowpack further thickened in the following winter months. This underlines the
strongcontrolofthesnowcoveronthewintertemperatureofthegroundand,consequently,onthe
meanannualgroundtemperature.
The Ground Freezing Index (GFI), computed as the cumulative value of the negative daily mean
groundtemperaturesbetween1stOctoberand30thJune,isshowninFig.5.Thelowestvalueswere
recorded in the winter 2005Ͳ2006 and 2007Ͳ2008 (Ͳ1197°Cͼday and Ͳ1052°Cͼday, respectively).
DespiteathinandlateͲappearedsnowcoverinwinter2006Ͳ2007,theGFIwaslessnegativethanthe
previousandthefollowingwinter,probablybecauseoftherelativelyhighairtemperature(seeCima
PresenaAWSinFig.4).ThehighestGFI(Ͳ471°CͼDay)sincethebeginningofthemeasurementswas
recordedinwinter2008Ͳ2009,whenaverythicksnowpackwaspresentontherockglaciersincethe
middleofautumn.
Fig.5–Annualgroundfreezingindex(GFI)atMaRGfrom2004to2009.
TheeffectofthesnowcoveronthegroundtemperaturecanbeobservedinFig.6.Inthegraph,the
evolutionofthemeanannualairtemperature(MAAT)atCimaPresenaAWSandtheevolutionofthe
mean annual ground temperature at MaRG are compared on the same period of time. The
temperaturesaredisplayedas12Ͳmonthsrunningmeans,andthedateonthexͲaxiscorrespondsto
the end of the period used for the calculation. The mean ground temperature on MaRG ranged
between0°CandͲ2°Cintheperiodofmeasurements(mid2005tomid2009),reachingthehighest
valuesin2007andin2009.Thefirstwarmingphase(2007)occurredafterawinterseasonthatwas
verymildandwithlittlesnow,whilethesecond(2009)followedanexceptionallysnowywinterwith
relativelycoldairtemperature.Onthisrockglacier,theevolutionofthegroundtemperatureseems
tobewellcorrelatedwiththeMAAT,atleastuntil2008.Infact,thestrongwarmingoftheground
observedin2009ismoreduetoaneffectofthethicksnowcoverofthepreviouswinterthantoa
correspondingwarmingintheairtemperature.
135
PermaNET–CasestudiesintheEuropeanAlps
Fig.6–EvolutionofthemeanannualairtemperatureatCimaPresenaautomaticweatherstation(topgraph)
andofthenearͲsurfacegroundtemperatureatMaRg(bottomgraph).Allthetemperaturesaredisplayedas12Ͳ
monthsrunningmeans,andthedateonthexͲaxiscorrespondstotheendoftheperiodusedforthecalculation.
InFig.7alltheobservationscarriedoutonMaRGaresummarized.Thetopgraphshowsthemean
annualdisplacementsince2001andhasbeendescribedabove.Theintermediategraphshowsthe
mean annual nearͲsurface temperature of the ground, and the bottom graph reports the mean
annualairtemperatureatCimaPresenaAWS.Inordertoemphasizethecontributionofthewinter
seasons,thevaluesofthemeanannualtemperature(bothforthegroundandfortheair)havebeen
calculatedtakingintoaccountanannualbasisextendingfromthe15thAugustofthepreviousyearto
the14thAugustofthefollowingyear.Forthisreason,anextremelywarmsummerlike2003isnotas
wellvisibleinthedatarecordasamildwinterlike2006Ͳ2007.
Fig.7–MeandisplacementofMaRG(topgraph)comparedwiththemeanannualgroundtemperature(middle
graph)andthemeanannualairtemperatureatCimaPresenaautomaticweatherstation(bottomgraph).
136
PermafrostResponsetoClimateChange
Fig. 8 – Potential change of frost, ice and freezeͲthaw days for 2020Ͳ2050, as proposed in chapter 2. The
locationofMaRGisshown.
137
PermaNET–CasestudiesintheEuropeanAlps
The displacement of the MaRG seems to react rapidly to the ground temperature variations,
apparently without any time delay. In the last three years, indeed, higher ground temperatures
correspondratherwellwithhigherdisplacementvelocities,asclarifiede.g.intheyear2006Ͳ2007.In
thisyear,therockglacierhasmovedfasterthaninthepreviousandinthefollowingyears,inclose
relationwiththehighermeantemperatureofthegroundthatwasslightlyabove0°C.Inthelastyear
of measurements (2008Ͳ2009) MaRG reached the highest velocity since the beginning of the
observations.Thisaccelerationcorrespondswithameangroundtemperaturethatapproachedagain
0°C,buttheeffectseemstobeamplifiedbythesnowcover.Infact,theexceptionallysnowywinter
of2008Ͳ2009couldhaveplayedaroleindeterminingthedisplacementrate,probablybecauseofthe
longmeltingphaseofthesnowcoverassociatedtothelongzerocurtainphaseofthegroundthat
characterizedMaRG(fromearlyMaytolateJuly;seeFig.4,bottomgraph).Thelongmeltingphase
couldhaveinducedaprolongedinfiltrationofmeltwaterintotheactivelayerand,possibly,intothe
frozencoreoftherockglacier,causingtheobservedacceleration.Asimilareffecthasrecentlybeen
observedanddescribedbyIkedaetal.(2008)onarockglacieroftheSwissAlps.
3. Possible future thermal and geomorphic response to predicted climate
change
Accordingtotheanalysesinchapter2,somespeculationsonthefutureevolutionofMaRGcanbe
done.IntheareawhereMaRGislocated,themodelledaveragenumberoffrostdaysintheperiod
1961Ͳ1990rangesbetween280and300peryear,andthepredictedchangefor2021Ͳ2050showsa
decreaseof15/16days/year.Inthesameareaandthesameperiod,theaveragenumberoficedays
is between 201 and 220 per year, with a predicted decrease of 17/19 days/year for 2021Ͳ2050.
RegardingtheaveragenumberoffreezeͲthawdays,ithasbeenmodelledasrangingbetween70and
80peryearinthe30Ͳyearreferenceperiod,andanincreaseof3/4days/yearispredictedfor2021Ͳ
2050.InFig.8thelocationofMaRG(whitedot)onthemapsofthepredictedchangeinfrost,iceand
freezeͲthaw days is displayed. Some changes in the dynamic response of MaRG to climate change
canbeexpected,becauseofthecloserelationshipbetweenitsbehaviourandtheclimaticvariables.
However, an assessment of its future evolution should carefully take into account the future
evolution of the precipitation (amount and distribution) and not only the predicted rise in air
temperature.
Acknowledgements. – Mauro Degasperi and Franco Crippa (Geological Survey, Autonomous
ProvinceofTrento)conductedthetopographicsurveysandprocessedtheroughtopographicdata.
FieldcollaborationwasprovidedbyLucaCarturan,StefanoFontanaandDavideTagliavini.Thiswork
waspartlyfundedbythePRIN2008project“ClimateChangeeffectsonglaciers,onglacierͲderived
waterresourceandonpermafrost:QuantificationoftheongoingvariationsintheItalianAlps”.
References:
Baroni C., CartonA. & SeppiR.,2004:Distribution and behaviour of rock glaciers in the AdamelloͲPresanella
Massif(ItalianAlps).PermafrostandPeriglacialProcesses,15,243Ͳ259.
Barsch D., 1996: Rockglaciers: Indicators for the Present and Former geoecology in High Mountain
Environments.Springer,Berlin,331pp.
138
PermafrostResponsetoClimateChange
Bodin X., Thibert E., Fabre D. Ribolini A., Schoeneich P, Francou B., Louis Reynaud L. & Fort M., 2009: Two
DecadesofResponses(1986–2006)toClimatebytheLaurichardRockGlacier,FrenchAlps.Permafrost
andPeriglacialProcesses,20,331Ͳ344.
Delaloye R., Perruchoud E., Avian M., Kaufmann V., Bodin X., Ikeda A., Hausmann H., Kääb A., KellererͲ
Pirklbauer A., Krainer K., Lambiel C., Mihajlovic D., Staub B., Roer I. & Thibert E., 2008: Recent
interannualvariationsofrockglacierscreepintheEuropeanAlps.Proceedingsofthe9thInternational
ConferenceonPermafrost(NICOP),UniversityofAlaska,Fairbanks,June29ͲJuly3,2008,343Ͳ348.
Haeberli W., Hallet B., Arenson L., Elconin R., Humlum O., Kaab A., Kaufmann V., Ladanyi B., Matsuoka N.,
SpringmanS.&VonderMühllD.,2006:Permafrostcreepandrockglacierdynamics.Permafrostand
PeriglacialProcesses,17,189Ͳ214.
Hoelzle M., Wegmann M. & Krummenacher B., 1999: Miniature temperature dataloggers for mapping and
monitoringofpermafrostinhighmountainareas:firstexperiencefromtheSwissAlps.Permafrostand
PeriglacialProcesses,10,113Ͳ124.
KääbA.,FrauenfelderR.&RoerI.,2007:Ontheresponseofrockglaciercreeptosurfacetemperatureincrease.
GlobalandPlanetaryChange,56,172Ͳ187.
IkedaA.,MatsuokaN.&KääbA.,2008:Fastdeformationofperenniallyfrozendebrisinawarmrockglacierin
theSwissAlps:Aneffectofliquidwater.JournalofGeophysicalResearch113,F01021.
PERMOS, 2009: Permafrost in Switzerland 2004/2005 and 2005/2006. Noetzli, J., Naegeli, B., and Vonder
Muehll,D.(eds.),GlaciologicalReportPermafrostNo.6/7oftheCryosphericCommissionoftheSwiss
AcademyofSciences,100pp.
Roer I., Kääb A. & Dikau R., 2005: Rockglacier acceleration in the Turtmann valley (Swiss Alps) – probable
controls.NorwegianJournalofGeography,59,157Ͳ163.
139
PermaNET–CasestudiesintheEuropeanAlps
3.
CasestudiesintheEuropeanAlps
3.12
Amolarockglacier,Vald’Amola,ItalianAlps
Citationreference
SeppiR.,BaroniC.CartonA.,Dall’AmicoM.,RigonR.,ZampedriG.,ZumianiM.(2011).Chapter3.12:
Case studies in the European Alps – Amola rock glacier, Val d’Amola, Italian Alps. In KellererͲ
PirklbauerA.etal.(eds):Thermalandgeomorphicpermafrostresponsetopresentandfutureclimate
changeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.ISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,
p.140Ͳ150.
Authors
Coordination:RobertoSeppi
Involvedprojectpartnersandcontributors:
Ͳ UniversityofPavia–RobertoSeppi
Ͳ UniversityofPisa–CarloBaroni
Ͳ MountainͲeeringsrl–MatteoDall’Amico
Ͳ UniversityofTrento–RiccardoRigon
Ͳ GeologicalSurvey,AutonomousProvinceofTrento–GiorgioZampedri
Ͳ Geologist–MatteoZumiani
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalandgeomorphicevolution
3. Possiblefuturethermalandgeomorphicresponsetopredictedclimatechange
References
140
PermafrostResponsetoClimateChange
Summary
Topographic measurements are in progress since 2001 on a glacierͲderived, active rock glacier
(namedAmolarockglacier,acronymAmRG,coordinates:46°12’09”N,10°42’46”E)locatedin
theAdamelloͲPresanellagroup,CentralItalianAlps.Inaddition,dataonthegroundtemperature
measured few centimetres below the surface are available since 2004. The displacement data
showthatsomeareasoftherockglaciercurrently(2001Ͳ2009)movewithvelocitiesrangingfrom
10 to 20cm/year, while other sectors can be defined as “dynamically inactive”. The average
velocityissignificantlyvariablefromyeartoyear,rangingfromaminimumof0.06m/year(2007Ͳ
2008)toamaximumof0.13m/year(2006Ͳ2007),andaslowingtrendhasbeenrecordedinthe
lasttwoyears.In2006Ͳ2007ahigherrateofdisplacementseemstoberelatedtoariseinthe
mean air temperature that probably caused a corresponding rise in the ground temperature.
However,inthelastyearofmeasurements(2008Ͳ2009),anincreaseinthegroundtemperature
causedbythelargeamountofsnowoftheprecedingwinter,didnotresultinacorresponding
increaseofthedisplacementrate.Thedynamicbehaviourofthisrockglacierreactsveryfastto
theexternalforcing,anditsresponseseemstobemodulatedbytheamountandevolutionofthe
snowduringwinter,duetoitseffectonthegroundtemperature.Thus,notonlythetemperature
but also the projected changes in the amount and distribution of precipitation, especially as
snow,shouldbetakenintoaccountinassessingtheresponseofthislandformtofutureclimate
change.
141
PermaNET–CasestudiesintheEuropeanAlps
1. Introductionandstudyarea
Activerockglaciersoriginatefromthecreepofperenniallyfrozendebris(i.e.permafrost)andmove
downslope with typical velocities ranging from few cm to more than 1m per year. The surface
displacementofactiverockglaciersismarkedlyvariablefromyeartoyear,andintheEuropeanAlps
arecentspeedingͲuptrendhasbeenunderlinedonsomelandforms(Roeretal.2005,Haeberlietal.
2006,Delaloyeetal.2008,PERMOS2009).Theinterannualvariabilityofthesurfacevelocityseems
toberelatedtotheclimaticfactorsinfluencinggroundsurfacetemperatureofthedeposits,suchas
theairtemperature,thethicknessanddurationofthewintersnowcoverandtheprocessesofwater
infiltration(Kääbetal.2007,Ikedaetal.2008;Bodinetal.2009)
In 2001 we choose an active rock glacier located in Val d’Amola for performing topographic
measurements,inordertostudyitssurfacedisplacementrateandthepotentialvelocityvariations
(Fig.1).Thisrockglacierisoneoftheactivelandformsincludedintherockglacierinventoryofthe
AdamelloͲPresanella massif (Baroni et al. 2004), where it has the number 51 and is also briefly
described. The measurements have been carried out using a laser theodolite and after the first
survey have been repeated in the late summer/early autumn of the following years (2002, 2004,
2006,2007,2008,2009).ThesurveyswereconductedeveryyearbetweenearlySeptemberandmid
October.Onthesurfaceoftherockglacier,amonitoringnetworkof25largebouldersmarkedwith
steelboltshasbeenestablished.
Fig.1–GeographicalsettingofthestudyareawithrockglacierAmRGandautomaticweatherstations(AWS)
In 2004 we also started to measure the temperature of the ground few centimetres below the
surface, using a miniature temperature data logger (UTL1, accuracy: ±0,25°C; Hoelzle et al. 1999)
placedinfineͲgraineddebrisonthelowerpartoftherockglacier.Thedataloggerhadamalfunction
in 2006 and stopped to collect data between March and August 2006. In order to compare the
groundtemperaturewiththeairtemperatureandtheevolutionofthewintersnowcover,weused
142
PermafrostResponsetoClimateChange
themeteorologicaldataoftwohighͲaltitudeautomaticweatherstations/AWS(CimaPresenaAWS,
3015ma.s.l.,andCapannaPresenaAWS,2730ma.sl.)locatedabout10kmfromtherockglacier.
AmRG is a tongueͲshape rock glacier located in a north facing glacial cirque, between an upper
altitudeof2480ma.s.l.andaloweraltitudeof2360ma.s.l.(topedgeofthefrontalslope)(Fig.2).It
isabout530mlongand250mwideandshowsadistinctivesetoflongitudinalandtransversalridges
onitssurface.Initsintermediateanduppersector,awidehollowlocatedbetweentwoelongated
longitudinalridgesispresent,whilethecompressiveridgescanbemainlyobservedinitslowerarea.
TherockglaciersurfaceismostlycomposedofmatrixͲfree,largeandveryangulargraniteboulders
(uptosomemetersindiameter),whilethefineͲgrainedmaterialfrequentlyoutcropsnotonlyonthe
lateralandfrontalslopes,butalsoonthetopofthelongitudinalandtransverseridges.Intherooting
area of the rock glacier, snow patches are present over the whole summer only in the most
favourableyears(i.e.withalargeamountsofsnowduringtheprecedingwinter).
Fig. 2 – General view of AmRG. The elevation at the front is about 2300m a.s.l., the highest peaks in the
backgroundreachelevationsofabout2700ma.s.l.PhotographybyR.Seppi(26.09.2009).
Fieldevidences,confirmedbyhistoricalmaps,showthatacirqueglacierwaspresentintherooting
area of the rock glacier during and after the Little Ice Age. This little glacier is still reported in a
1:75.000mapof1903,whileinmorerecentmaps(e.g1:25.000mapof1973)thecirqueisindicated
withoutaglacier.Thematerialcomposingthisrockglacierisprobablyofdifferentorigin,butglacial
till seems prevailing. Therefore, this landform is developing from glacial deposits and thus can be
defined,accordingtothedefinitionofBarsch(1996),asadebrisrockglacier.
143
PermaNET–CasestudiesintheEuropeanAlps
SeveralspringsemergeatthebaseofthefrontalslopeofMaRG.Besidetheotherinvestigations,in
2004westartedtomeasurethetemperatureofthewater,inordertogetadditionalinformationon
thepresenceofafrozencorewithintherockglacier.Thewatertemperaturewasmeasuredseveral
times during summer using a handͲheld thermometer and continuously from early August to late
September2004usingdataloggers(HoboH8Temp,accuracy:±0,4°C).
2. Permafrostindicatorsandrecentthermalandgeomorhicevolution
The water temperature that was monitored continuously in late summer 2004 showed very cold
values (below 1°C). Therefore, this data support the presence of permafrost in the rock glacier
(Fig.3).
Fig. 3 – Water temperature of a spring (SLC7) emerging from AmRG continuously measured between August
andSeptember2004.ThelocationofthespringisindicatedinFig.4.
The total displacement (2001Ͳ2009) of AmRG ranges between 0.05m (boulder 9) and 1.60m
(boulder 15), corresponding to a velocity of 0.01 and 0.20m/year, respectively (Fig. 4 and Tab. 1).
Thefrontalareaofthisrockglaciershowsaverydifferentbehaviour,withanactivesector(boulders
1to6)closetoasectorthatcanberegardedasdynamicallyinactive(boulders7to11).Similarly,the
rightsideoftherockglacier(boulders12to20)ismoreactivethanthemiddleandtheleftsectors
(boulders21to25).Thesurveyedboulderslocatedonthelongitudinalridgemovetowardthecentre
ofthelandform,whereawidehollowispresent.
The meandisplacementofAmRGinallintervalof measurementsisshowninFigure8(topgraph),
where all the surveyed points have been taken into account. The average velocity is significantly
variable from year to year, ranging from a minimum of 0,06m/year (2007Ͳ2008) to a maximum of
0,13m/year(2006Ͳ2007).Aslowingtrendseemstoemergeinthelasttwoyearsofmeasurements.
ThenearͲsurfacetemperatureofthegroundrecordedonAmRGfromAugust2004toAugust2009is
showninFig.5(bottomgraph).Inthisgraph,thegroundtemperature(dailymean)isassociatedto
theairtemperature(centralgraph)andtothethicknessofthesnowcover(topgraph).
144
PermafrostResponsetoClimateChange
Table 1 – Horizontal displacement of AmRG. The first six columns show the displacement for each period of
measurements, the column seven the total displacement, and the column eight the displacement rate. (*)
Measurementperiodoftwoyears.
Boulder
ID
Horizontaldisplacement(m)
2001Ͳ09
total
horizontal
displacement
(m)
2001Ͳ09
horizontal
displacement
rate
(m/yr)
2001Ͳ02
2002Ͳ04(*)
2004Ͳ06(*)
2006Ͳ07
2007Ͳ08
2008Ͳ09
01
0.13
40.42
17.83
0.17
0.09
0.10
1.08
0.13
02
0.13
39.59
9.61
0.12
0.08
0.10
0.93
0.12
03
0.15
39.05
13.58
0.14
0.06
0.09
0.97
0.12
04
0.12
34.71
12.50
0.12
0.08
0.06
0.85
0.11
05
0.06
19.33
6.74
0.08
0.06
0.11
0.57
0.07
06
0.05
9.10
3.70
0.07
0.02
0.01
0.28
0.03
07
0.02
10.55
0.00
0.09
0.01
0.00
0.16
0.02
08
0.04
6.08
0.00
0.06
0.00
0.01
0.13
0.02
09
0.04
3.23
0.00
0.07
0.00
0.01
0.05
0.01
10
0.04
14.80
0.87
0.06
0.00
0.06
0.32
0.04
11
0.02
0.00
5.90
0.08
0.00
0.00
0.08
0.01
12
0.07
25.56
10.75
0.13
0.04
0.10
0.71
0.09
13
0.13
36.30
25.13
0.21
0.11
0.17
1.23
0.15
14
0.11
36.44
23.37
0.22
0.13
0.25
1.30
0.16
15
0.16
39.15
39.09
0.36
0.19
0.10
1.60
0.20
16
0.04
15.26
6.88
0.13
0.02
0.00
0.39
0.05
17
0.07
24.13
17.22
0.21
0.05
0.02
0.76
0.10
18
0.04
18.79
5.97
0.16
0.02
0.04
0.51
0.06
19
0.15
32.93
31.83
0.34
0.18
0.00
1.31
0.16
20
0.07
24.89
10.23
0.07
0.05
0.14
0.69
0.09
21
0.08
19.96
8.94
0.13
0.05
0.03
0.58
0.07
22
0.04
12.59
4.91
0.05
0.02
0.07
0.36
0.04
23
0.06
23.01
5.15
0.06
0.05
0.07
0.53
0.07
24
0.04
15.25
0.03
0.10
0.04
0.00
0.29
0.04
25
0.04
13.15
0.00
0.09
0.03
0.00
0.28
0.03
Focusing on the winters the coldest temperatures were recorded in the 2004Ͳ2005 and 2005Ͳ2006
seasons.Duringbothwinters,thegroundreachedtemperaturesbelowͲ10°C.Thestrongcoolingof
thegroundmaybeduetothecombinedeffectofcoldairtemperatureandrelativelythinsnowpack
in autumn and early winter. In the two following winters (2006Ͳ2007 and 2007Ͳ2008), the ground
temperaturewaswarmer,withamarkedphaseofWEqT(WinterEquilibriumTemperature)ofabout
Ͳ5°C. The winter 2006Ͳ2007 was very mild and the snowpack was relatively thin until mid winter,
whilethefollowingwinter(2007Ͳ2008)wascolderandsnowier.
Thehighestwintertemperatureswererecordedduringthe2008Ͳ2009seasonandreachedaWEqT
phaseofaboutͲ3°C.Thiswasmainlyduetothepresenceofaverythicksnowcover,whichappeared
early in autumn and further increased in the following winter months. The snow, with its thermal
insulatingeffect,preventedthecoolingofthegroundalreadyinthefirstpartofthewinter,whilethe
air temperature was not particularly mild compared to the preceding winters. This underlines the
strongcontrolofthesnowcoveronthewintertemperatureofthegroundand,consequently,onthe
meanannualgroundtemperature.
145
PermaNET–CasestudiesintheEuropeanAlps
Fig.4–Totalhorizontaldisplacement(2001Ͳ2009)ofAmRG.ThelocationofthespringmentionedinFig.3is
indicated.
Fig.5–Topandmiddlegraphs:snowthicknessandairtemperatureatCapannaPresenaautomaticweather
station;bottomgraph:groundnearͲsurfacetemperaturefromAugust2004toAugust2009forAmRG.Thelack
ofdatainthefirsthalfof2006wasduetoadataloggerfailure.Forlocationoftemperaturedataloggersee
Fig.4.
146
PermafrostResponsetoClimateChange
Fig.6–Annualgroundfreezingindex(GFI)atAmRGfrom2004to2009.Nodatawereavailableforthe2005Ͳ
2006period.
Fig.7–EvolutionofthemeanannualairtemperatureatCimaPresenaautomaticweatherstation(topgraph)
andof the nearͲsurfaceground temperature at AmRG (bottom graph). All the temperatures are displayed as
12Ͳmonths running means, and the date on the xͲaxis corresponds to the end of the period used for the
calculation.
ThecoolingofthegroundduringthewinterseasonisalsohighlightedbytheGroundFreezingIndex
(GFI),calculatedasthecumulativevalueofthenegativedailymeangroundtemperaturesbetween
1stOctoberand30thJune(Fig.6).Thecoldestwinter(Ͳ1020°Cͼday)wasrecordedin2004Ͳ2005dueto
acombinationofverycoldairtemperatureandrelativelythinsnowcover.Theindexwasalsovery
147
PermaNET–CasestudiesintheEuropeanAlps
low in the winter 2007Ͳ2008 (Ͳ972°Cͼday), as a result of the strong cooling of the ground at the
beginningofthewinterduetocoldairtemperatureduringautumnandearlywinter.AveryhighGFI
value (Ͳ360°Cͼday) was recorded in 2008Ͳ2009, mainly due to the very thick snow cover of that
winter.
TheroleofthewintersnowcoveronthegroundtemperaturecanalsobeobservedinFig.7,where
theevolutionofthemeanannualairtemperature(MAAT)atCimaPresenaAWSandtheevolutionof
theMAGSTarecomparedonthesameperiodoftime.Thetemperaturesaredisplayedas12Ͳmonths
running means, and the date on the xͲaxis corresponds to the end of the period used for the
calculation.Groundtemperaturedataaremissingin2006and2007becauseofthefailureofthedata
logger.Forexample,astrongwarmingofthegroundin2009(temperaturesabove1°C)andaclear
separationbetweenthetemperaturetrendsofsoilandaircanbeobserved.Thisisduemoretothe
effect of the thick snow cover of the previous winter than to a corresponding warming of the air
temperature.
Finally,inFig.8themeanannualdisplacementrateiscomparedwiththemeanannualtemperature
of the ground and the air. In order to emphasize the role of the winter seasons, the values of the
mean annual temperature (both for the ground and for the air) have been calculated taking into
accountanannualbasisextendingfromthe15thAugustofthepreviousyeartothe14thAugustofthe
followingyear.Forthisreason,anextremelywarmsummerlike2003isnotaswellperceptibleinthe
datarecordasamildwinterlike2006Ͳ2007.Thegroundtemperaturedataaremissingfor2005Ͳ2006
and2006Ͳ2007.
Fig.8–MeandisplacementofAmRG(topgraph)comparedwiththemeanannualgroundtemperature(middle
graph)andthemeanannualairtemperatureatCimaPresenaautomaticweatherstation(bottomgraph).
In 2006Ͳ2007, an increase in the displacement rate corresponds quite well with a higher air
temperaturecomparedtotheprecedingyear.Inthefollowingyear,thedisplacementratedecreased
considerably, in good agreement with a lower air temperature. In the last year of measurements
(2008Ͳ2009),thedisplacementratewasonlyslightlyhigherandthemeanairtemperaturesomewhat
lowerthanintheprecedingyear.Inthesameyear,asignificantincreaseinthegroundtemperature
duetothelargeamountofsnow(seeabove)wasrecorded,butthisdoesnotseemtohaveresulted
inanincreaseofthedisplacementrate.
148
PermafrostResponsetoClimateChange
Fig. 9 – Potential change of frost, ice and freezeͲthaw days for 2020Ͳ2050, as proposed in chapter 2. The
locationofAmRGisshown.
149
PermaNET–CasestudiesintheEuropeanAlps
3. Possible future thermal and geomorphic response to predicted climate
change
FutureevolutionandgeomorphicresponseofAmRGtoclimatechangearedifficulttohypothesize.
As reported in chapter 2, not only changes in the temperature for the end of the 21st century (a
warmingof4.2°Cinthealpineareasabove1800ma.s.l.),butalsosignificantchangesinthenumber
offrost,iceandfreezeͲthawdaysfortheperiod2021Ͳ2050canbeexpected.Accordingtothis,inthe
areawhereAmRGislocated,weexpectadecreaseinthefrostdaysof15/16days/year,adecreasein
theicedaysof15/19days/yearandaslightincreaseinthefreezeͲthawdaysof0/4days/year(Fig.9).
As highlighted above, the dynamic response of AmRG seems to be related to the changes in the
amountandevolutionofthesnowduringwinter,duetoitseffectonthegroundtemperature.Thus
alsothefuturechangesintheamountanddistributionofprecipitations,especiallyassnow,should
betakenintoaccountinassessingtheresponseofthislandformtofutureclimatechange.
Acknowledgements. – Mauro Degasperi and Franco Crippa (Geological Survey, Autonomous
ProvinceofTrento)conductedthetopographicsurveysandprocessedtheroughtopographicdata.
FieldcollaborationwasprovidedbyLucaCarturan,StefanoFontanaandAndreaPaoli.Thisworkwas
partlyfundedbythePRIN2008project“ClimateChangeeffectsonglaciers,onglacierͲderivedwater
resourceandonpermafrost.QuantificationoftheongoingvariationsintheItalianAlps”.
References:
Baroni C., CartonA. & SeppiR.,2004:Distribution and behaviour of rock glaciers in the AdamelloͲPresanella
Massif(ItalianAlps).PermafrostandPeriglacialProcesses,15,243Ͳ259.
Barsch D., 1996: Rockglaciers: Indicators for the Present and Former geoecology in High Mountain
Environments.Springer,Berlin,331pp.
Bodin X., Thibert E., Fabre D. Ribolini A., Schoeneich P, Francou B., Louis Reynaud L. & Fort M., 2009: Two
DecadesofResponses(1986–2006)toClimatebytheLaurichardRockGlacier,FrenchAlps.Permafrost
andPeriglacialProcesses,20,331Ͳ344.
Delaloye R., Perruchoud E., Avian M., Kaufmann V., Bodin X., Ikeda A., Hausmann H., Kääb A., KellererͲ
Pirklbauer A., Krainer K., Lambiel C., Mihajlovic D., Staub B., Roer I. & Thibert E., 2008: Recent
interannualvariationsofrockglacierscreepintheEuropeanAlps.Proceedingsofthe9thInternational
ConferenceonPermafrost(NICOP),UniversityofAlaska,Fairbanks,June29–July3,2008,343Ͳ348.
Haeberli W., Hallet B., Arenson L., Elconin R., Humlum O., Kaab A., Kaufmann V., Ladanyi B., Matsuoka N.,
SpringmanS.&VonderMühllD.,2006:Permafrostcreepandrockglacierdynamics.Permafrostand
PeriglacialProcesses,17,189Ͳ214.
Hoelzle M., Wegmann M. & Krummenacher B., 1999: Miniature temperature dataloggers for mapping and
monitoringofpermafrostinhighmountainareas:firstexperiencefromtheSwissAlps.Permafrostand
PeriglacialProcesses,10,113Ͳ124.
KääbA.,FrauenfelderR.&RoerI.,2007:Ontheresponseofrockglaciercreeptosurfacetemperatureincrease.
GlobalandPlanetaryChange,56,172Ͳ187.
IkedaA.,MatsuokaN.&KääbA.,2008:Fastdeformationofperenniallyfrozendebrisinawarmrockglacierin
theSwissAlps:Aneffectofliquidwater.JournalofGeophysicalResearch113,F01021.
PERMOS, 2009: Permafrost in Switzerland 2004/2005 and 2005/2006. Noetzli, J., Naegeli, B., and Vonder
Muehll,D.(eds.),GlaciologicalReportPermafrostNo.6/7oftheCryosphericCommissionoftheSwiss
AcademyofSciences,100pp.
Roer I., Kääb A. & Dikau R., 2005: Rockglacier acceleration in the Turtmann valley (Swiss Alps) – probable
controls.NorwegianJournalofGeography,59,157Ͳ163.
150
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.13
PizBoèrockglacier,Dolomites,EasternItalianAlps
Citationreference
A. Crepaz A., Cagnati A., Galuppo A., Carollo F., Marinoni F., Magnabosco L., Defendi V. (2011).
Chapter 3.13: Case studies in the European Alps – Piz Boè rock glacier, Dolomites, Eastern Italian
Alps.InKellererͲPirklbauerA.etal.(eds):Thermal andgeomorphicpermafrostresponsetopresent
andfutureclimatechangeintheEuropeanAlps.PermaNETproject,finalreportofAction5.3.OnͲline
publicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.151Ͳ158.
Authors
Coordination:AndreaCrepaz
Involvedprojectpartnersandcontributors:
Ͳ RegionalAgencyfortheEnvironmentalProtectionofVeneto,Italy(ARPAV)–AndreaCrepaz,
AnselmoCagnati
Ͳ Regione Veneto, Direzione Geologia e Georisorse, Servizio Geologico (GeoVE) – Anna
Galuppo,LauraMagnabosco,ValentinaDefendi
Ͳ E.P.C.EuropeanProjectConsultingS.r.l.–FedericoCarollo
Ͳ Freelancer–FrancescoMarinoni
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
151
PermaNET–CasestudiesintheEuropeanAlps
Summary
Recently,ARPAVincollaborationwithGeoVEstartedtomonitortheperiglacialenvironmentof
Piz Boè (46.51° N, 11.83° E), in Veneto region, at an altitude of 2900m a.s.l. In the past, some
preliminarygeoelectricalandgeoseismicsurveyswerecarriedoutontherockglacier,butonlyin
the framework of the PermaNET project the characteristics of the permafrost are extensively
studied. Continuous GST (Ground surface temperature) measurements were carried out in the
winter 2009/2010; a 30m deep borehole was drilled in Dolomite bedrock and an automatic
weatherstationwasinstalledinsummer2010.Laterweplannedtocarryoutasecondelectrical
resistivity tomography (ERT) campaign (first one in 2005) on the rock glacier. In this report we
presentthefirstresultsonthecomparisonofERTmeasurementscarriedoutin2005and2010.
Thedatacomparisondoesnotshowsignificantchangesinthestructureoftheicecoveredwith
debrisduringthelastfiveyears.Inparticular,itseemsthatthecoveredicedidneithermodifyits
consistencenoritsextent.Duetotheshortmonitoringtimeandthelackofotherexperimental
dataonthePizBoèsite,itisverydifficulttoexplainitsfuturebehaviour.ARPAVmanagesalsoa
broad weather station network on Veneto mountain region, so the highest station data (Ra
Vales) was used to make some analysis of the last years. For the next century climate models
estimate a dramatic increase of air temperature. This condition will directly influence the
thickness,theextensionandthedisplacementoftherockglacieratPizBoè.
152
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
The Piz Boè site is located in the NorthͲEast of Italy (46.51°N, 11.83°E; Fig. 1), on the border of
Veneto region, at 2900m a.s.l. on the Sella Group, near Piz Boè peak (Fig 2). The Sella Group
represents one of the most important massifs of the Dolomites. Its base is constituted by the
“DolomiadelloSciliar”Formation(LadinianͲLowerCarnian).ThethicknessofthisnonͲstratifiedcoral
reef varies from 300 to 600m. The top of the massif is made up by “Dolomia Principale” (Norian).
Thegeologicalboundarybetweenthetwoabovementionedformationsisveryclearandmarkedby
layersofmarlsandclaysofthe“RaiblFormation” (Carnian).Thewhite/cleargreyDolomiaPrincipale
Formationiswellstratifiedanditsthicknessreachesitsmaximum(300Ͳ350m)atPizBoè,whereitis
covered by the most recent “Calcari di Dachstein” (Lias), nodular limestones of the “Rosso
Ammonitico”Formation(Jurassic)and“MarnedelPuez”Formation(LowerCretaceous).
Fig.1–GeographicalsettingofVenetoregionandPizBoèintheDolomites,EasternItalianAlps
AtNorthͲEastofthepeakPizBoètherewasaglacier,listedin1980’scampaignsurveywithabouta
surface of 0.04km2. Nowadays the glaciated area is very limited (about 0.014km2), but a debris
coveredglacier(insomemapsitisconsideredarockglacier)hasbeenformedbelowtheglacier.At
the bottom of the debris there is a small shallow lake (Lech Dlacé, Fig. 3), which is completely
coveredbysnowandiceithemostpartoftheyearover(NovembertoJune).
153
PermaNET–CasestudiesintheEuropeanAlps
Fig.2–SellaGroupandPizBoè(3151ma.s.l.)fromEast(Livinallongo).Locationofthestudysiteisindicated
withanarrow.PhotographbyBrunoRenon(ARPAV)(30.07.2008).
Boreholeand
weatherstation Dataloggers
2005/2010
2010WͲE
Spring
Fig.3–ViewtowardsSouthͲWestofthelakeLechDlacéandtherockglacierofPizBoèwiththelocationofthe
borehole and the weather station, dataloggers, ERT profiles and the spring. Elevation of the lake is 2833m
a.s.l.,elevationofthepeakinthebackground(PizBoè)is3151ma.s.l.NotethewidespreadappearanceoflateͲ
lyingsnowpatches.PhotographbyBrunoRenon(ARPAV)(30.07.2008).
154
PermafrostResponsetoClimateChange
2. Permafrostindicatorsandrecentthermalevolution
2.1Methods
InJuly2010aboreholewasdrilledintothebedrockdowntoadepthof30mandathermistorchain
of16sensors(at0.02,0.3,0.6,1.0,1.5,2.0,3.0,3.5,4.5,5.5,10.0,15.0,20.0,25.0,30.0mfromthe
surface)wasplacedtomeasurethegroundtemperatures.InSeptember2010aweatherstationwas
installedatthelocationindicatedinfig.3;itmeasuesairtemperature,relativehumidity,snowpack
height,winddirectionandvelocity,incomingandoutcoming(shortwaveandlongwave)radiation.
DuringSummer2010watersampleswerecollectedfromthespringcomingoutfromtherockglacier
andfromtheLechDlacéwithatemporalresolutionofabout15days,inordertoevaluatechemical
compositionanditsrelativeseasonalchanges;watertemperaturesweremeasuredaswell.
SinceOctober2009twodataloggers(HoboProV2U23Ͳ001,OnsetComputerCorp.),loggingevery30
minutes, have been placed near Piz Boè rock glacier in order to measure the ground surface
temperature.Thefirstonewasputontherockglacierfrontandthesecondoneoutsideoftherock
glacier,belowthefront,wheretheweatherstationwasplannedtobeinstalledinSeptember2010
(see Fig. 3 for location). They were recovered in the melting season in July 2010. At the end of
October,onedataloggerwasreplacedinthesameprevioussite,afewcentimetersbelowthesurface
oftherockglacier,whiletheotherone,outsideoftherockglacier,wasmovedabout30mtowards
SouthͲEast.
Duringthesummer2005adetailedtopographicsurveywascarriedoutandinthesummer2010a
LaserScannersurveywasperformedbyIRPICNR.
The study area was furthermore investigated on 01.09.2010 by performing an electrical resistivity
profile (ERT) of 124 m, using the device electrode WennerͲSchlumberger with a distance between
the electrodes equal to 4m and maximum depth of exploration of 25m. The inversion of
geoelectricaltomographicdatawasperformedusingthemethodproposedbyLaBrequeetal.(1996),
using a finite element algorithm based on the concept of reverse OCAM'S (Oldenburg, 1994) and
implementedinsoftwarePROFILER(Binely,2003).Theconfigurationwascomparabletotheoneof
theERTcampaignon04.08.2005,thelengthofwhichwas141m.
2.2Resultsoncurrentpermafrostexistence
Fig.4showsthemeasuredtemperaturesduringtheperiod09.10.2009and02.07.2010alsodepicting
somesignificantevents.On22ndOctoberthefirstsnowfalloccurred(about5Ͳ10cmoffreshsnow),
meltingthefollowingdays.ThenextsignificantsnowfalloccurredatthebeginningofNovemberwith
about 50Ͳ60cm of fresh snow; this part of snow pack remained all the winter, even though at the
endofNovembertheairtemperatureincreasedwithfreezinglevelatabout3200Ͳ3500m.Duringall
thewinter,groundsurfacetemperaturesremainedataboutͲ4toͲ2°C.InFebruary,Marchandpart
of April GST was about Ͳ4°C in both sites (winter equilibrium temperature – WeqT). At the end of
April on the rock glacier zero curtain was reached, while on the monitoring site temperatures
remainedbelow0°C,excepton29thAprilwhentemperaturesincreasedupto0°C.On17thMay2010
asnowpitwasdugonthemonitoringsiteandabottomtemperatureofsnowcover(BTS)ofͲ1.5°C
wasmeasured(dataloggervalueswerearoundͲ1.7°C).Zerocurtainonthebedrockstartedon11th
June, while on the rock glacier snow was already completely melted; at the beginning of July the
dataloggeronthebedrockwasburiedinameltingicelayer.
Thesetemperatureresultsindicatethepossiblepresenceofpermafrostonthebedrockandonthe
debris, where in 2005 ERT measurements were performed, as well. In summer 2010, the ERT
measurementswererepeatedalongthesamesectionandtheinvestigationwasextendedtoanew
orthogonalWͲEorientedtransect,alongthemaximumslopegradient.Inthisworkwecomparethe
profilescarriedoutin2005and2010alongthesamesection.
155
PermaNET–CasestudiesintheEuropeanAlps
12.0
10.0
Bedrock
Rock glacier
22/10 5/10 cm Fresh snow
8.0
02-03/11 Snow Height 50/60 cm
6.0
GST (°C)
17.05 Snow pit (Snow Height 240 cm)
4.0
2.0
0.0
-2.0
-4.0
Zero curtain on the bedrock
21/06/2010
06/06/2010
22/05/2010
07/05/2010
22/04/2010
07/04/2010
23/03/2010
08/03/2010
21/02/2010
06/02/2010
22/01/2010
07/01/2010
23/12/2009
08/12/2009
23/11/2009
08/11/2009
24/10/2009
09/10/2009
-6.0
Date
Fig.4–Evolutionofthegroundsurfacetemperaturebetween09.10.2009and02.07.2010.InredGSTfromthe
rockglacier,inbluefromthesiteoftheplannedborehole.
The twoͲdimensional model obtained by inversion of apparent resistivity data (Fig. 5) returns the
actualdistributionofvaluesofresistivityinthesubsurface;itishighlightedbothbyisolinesandby
colour scale. The first contour has been traced to a value of 5*104ɏ*m. The second isoline is
1*105ɏ*m, while the subsequent ones are placed at intervals of 2*105ɏ*m up to the value of
1*106ɏ*m;forhigherresistivitythespacingbetweentheisoresistivelinesishigher.
Highest resistivity values (above 1.5*106 ɏ*m) might be related to massive ice; values between
1*105ɏ*m and 1.5*106ɏ*m should correspond to ice mixed with boulders, while lower values
(5*104ɏ*m<ʌ<1*105ɏ*m)mightdetecttheactivelayer.
Comparingthetwoprofileswe can makethefollowingobservations.The geometryof thebodyat
veryhighresistivityissimilarinthetwosections.At2940maltitudea.s.l.,thewidthoftheanomaly
resistive(ʌ>1.5x106ɏ*m)isapproximatelyequalto99m.Thesurfacemateriallayer(about2mof
boulders mixed to fine grained debris) shows more or less the same thickness in both profiles
(ʌ<5*104).
Thethicknessoftherockglacierismoreorlessthesame,greaterthan23minbothcases.Inboth
profiles the maximum depth of investigation was not sufficient to achieve resistence values
attributabletothebedrock.Theanalysisofthetwosectionsalsoshowsthelimiteddifferencesinthe
pattern of deeper sections; in the section of the 2005 isoresistive lines remain open on values
ranging from 1.5 to 5*106ɏ*m, while in the section of 2010 they reach values close to
2*106ɏ*m.Thesedifferencesarenotsignificantbecausetheslightdiscrepancyinthepositioningof
two profiles on the ground and high difference of resistivity on surface layer, which may affect, in
part,theresultsofthereverseprocesses.
The section of 2005 showed a difference in the resistive body, with two anomalies at very high
resistivity(ʌ>4x106ɏ*m),separatedbyastripwithslightlylowerresistivity(ʌ=1.5x106ɏ*m).The
156
PermafrostResponsetoClimateChange
section of 2010 shows these two anomalies, too, but their separation is more weakened. Also this
differencecanbeexplainedinpartwiththeconsiderationslistedabove.
Wecanconcludethatthesetwoprofilesareverysimilarandthattheslightdifferencesaremainly
attributabletothemethoduncertainty.
Altitude(m)
2005
Altitude(m)
Distance(m)
2010
Distance(m)
Resistivity(ohm*m)
Fig.5–Resultsoftheelectricaltomography(ERT)campaignson04.08.2005and01.09.2010.
3. Possiblefuturethermalresponsetopredictedclimatechange
ThePizBoèrockglacierismonitoredsince2005.From2005to2010noairtemperaturesdataare
available because the weather station was not installed before September 2010. However, time
series of both air temperature (until 2009) and snow height is available for Ra Vales station, at
2615ma.s.l.,about19kmtotheEastͲNorthͲEastofPizBoè.
Takingintoaccountthelasttenyears(Table1);thefirstperiod(2000Ͳ2005)seemstobecolderthan
thelastone(2005Ͳ2010).MAATwassignificantloweralltheyears,whileitincreasedinthelastfive
years, when values were above 0°C in 2006, 2007 and 2008. The number of frost and ice days
decreased in the last years. Snow cover duration is similar during these two periods. A little
difference can be observed in June; in the last three years snow cover duration was longer in the
earlysummer,whilein2000Ͳ2005someyearswerecharacterizedbyatotalabsenceofsnowcover.
Winter snow height was not so high in 2005Ͳ2008, while in the last two years snow amount was
higher.
157
PermaNET–CasestudiesintheEuropeanAlps
Table 1 – Different temperature derived parameters from the meteorological station Ra Vales (2615m a.s.l.)
19km to the EastͲNorthͲEast of Biz Poè (DSC=days with snow cover; MAAT=mean annual air temperature;
JJA=JuneͲJulyͲAugust).
RaVales
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
Frostdays
221
239
238
225
233
229
218
202
215
211
247
Icedays
141
140
131
137
134
133
110
104
120
138
157
Freeze/Thawdays
80
99
107
88
99
96
108
98
95
73
90
DaysofSnowcover
173
255
265
240
166
248
207
231
247
235
266
0
30
17
0
30
1
12
6
22
20
23
MAAT
Ͳ0.38
Ͳ0.89
Ͳ0.30
Ͳ0.14
Ͳ0.97
Ͳ1.46
0.10
0.94
0.51
Ͳ0.06
Ͳ2.13
JJAMeanAirTemp
6.10
6.28
6.55
9.08
5.95
5.66
5.99
6.94
7.26
7.23
6.36
JuneDSC
Summermeantemperature(JJA)seemstoincreaseduringthelasttenyearswithapeakin2003;this
veryhotsummercertainlyinfluencedthemeltingoftheseasonalsnowpackandoftheiceaswell.
Thelastyear(2010)wasthecoldestoneofthelasteleven,withaverylongsnowcoverduration;this
mighthavesignificantlyinfluencedERTprofileofthe2010.Thismeteorologicalbehaviouralloweda
quasiͲsteadysituationforthedebriscoveredglacierofPizBoèinthelastfiveyears.
Climate models show a dramatic air temperatures increase for the next century (see chapter 2),
especially at high altitudes, and this will certainly influence covered ice. In the next decades,
accordingtoSRESA1B,frostandicedayswilldecreasebyabout14Ͳ15days.Coveredicewilllikely
meltquicklyduringthenextdecadesandthedisplacementoficewillincrease.Themoreimportant
factors that will determine the velocity of melting and displacement, will be the summer
temperaturesandsnowcoverdurationintheearlysummer.DuringthenextyearsARPAVisgoingto
investigatethefutureevolutionofpermafrostatPizBoè.
Acknowledgements.–TheauthorsthankAbuZeidNasserforhisworkduringfieldcampaign.
References:
BinelyA.,2003:2Dinversionofapparentresistivitydatausing“Profiler”.InstituteofEnvironmental
andNaturalSciences,LancasterUniversity,LANCASTER,UK.6pp.
LaBreque D.J., Miletto M., Daily W., Ramirez A., Owen E., 1996: The effects of noise on Occam’s
inversionofresistivitytomographydata.Geophysics,61,538Ͳ548.
OldenburgD.,L.Y.,1994:Inversionofinducedpolarizationdata.Geophysics,59,9:1327.
158
PermafrostResponsetoClimateChange
3.
CasestudiesintheEuropeanAlps
3.14
UpperSuldenValley,OrtlerMountains,ItalianAlps
Citationreference
Zischg A., Mair V. (2011). Chapter 3.14: Case studies in the European Alps – Upper Sulden Valley,
Ortler Mountains, Italian Alps. In KellererͲPirklbauer A. et al. (eds): Thermal and geomorphic
permafrostresponsetopresentandfutureclimatechangeintheEuropeanAlps.PermaNETproject,
finalreportofAction5.3.OnͲlinepublicationISBN978Ͳ2Ͳ903095Ͳ58Ͳ1,p.159Ͳ169.
Authors
Coordination:AndreasZischg
Involvedprojectpartnersandcontributors:
Ͳ AbenisAlpinexpertGmbH/srl–AndreasZischg
Ͳ Automous Province of Bolzano Ͳ South Tyrol, Office for Geology and Building Materials
Testing(GeoLAB)–VolkmarMair
Content
Summary
1. Introductionandstudyarea
2. Permafrostindicatorsandrecentthermalandgeomorphicevolution
3. Possiblefuturethermalresponsetopredictedclimatechange
References
159
PermaNET–CasestudiesintheEuropeanAlps
Summary
ThecasestudyfromtheUpperSuldenValley(46°29’37.87’’N,10°36’57.31’’E),OrtlerMountains,
ItalianAlps,showedthegeomorphicresponseofflatorgentlyinclinedareascoveredbydebrisin
a highͲmountain ski resort outside of rock glaciers. The subsidence of the surface due to the
melting of the ground ice lies in a dimension of 4m in 11 years (1996Ͳ2006). The measured
surface subsidence is accompanied with geomorphic signs such as thermokarst phenomena or
with increasing surface temperatures. In steeper areas, geomorphic signs of slope movements
arefoundinareaswithprobablepresenceofpermafrost.Thesubsidenceofsurfaceisrelevant
forskiinfrastructuresandmustbehandledwithsometechnicaleffort.Inthevicinityofthepillar
no.12oftheskiliftMadritschjoch,mostprobablythegroundicehasmeltedtotally.Therefore,
thesubsidenceprocessofthesurfacenearthepillarisfinished.However,thiscanbeconcluded
onlyforthisspecificlocationinthestudyarea.Inotherareaswheregroundiceisstillpresent,
thedegradationprocesswillcontinuewiththeexpectedincreaseoftemperatures.
160
PermafrostResponsetoClimateChange
1. Introductionandstudyarea
Thestudyareaissituatedintheskiresort"SuldenͲMadritsch"intheUpperSuldenValley,community
of Stilfs/Stelvio, Autonomous Province of Bozen/Bolzano (46°29’37.87’’N, 10°36’57.31’’E, Figs. 1, 2
and3).ThestudyareaissituatedintheOrtlermountainrangeneartheStilfserjochpass.Theextent
of the study area is about 5km2. The area is mostly free of vegetation and is partially covered by
debris. One small rock glacier is situated in the study area. During the period between 1805 and
1850,partsoftheareawerecoveredbyasmallglacier.
Intheearly1990s,ateamoftheUniversityofMunichbeganitsfirstpermafrostinvestigationsinthis
area(Stötter1994).In1992firstmeasurementsofthetemperaturesatthebottomofthesnowcover
(BTS), topographic surveys and geophysical measurements (seismics) for mapping the permafrost
distribution had been made. Since 2004, the BTS measurements have been repeated in the years
2004,2006,2007,2008and2009.BTSmeasurementswerecarriedoutatmorethan1100pointsin
thestudyarea.Since2006,devicesformeasuringthegroundsurfacetemperatures(UTLdataloggers)
wereinstalledon10locationsinthestudyarea.
Fig.1–LocationofthestudyareaUpperSuldenValley.
Fig. 2 – Overview of the study area Upper Sulden Valley. Photograph taken from the upper station of the
"Madritschjoch"skiliftlocatedat3150ma.s.l.PhotographbyA.Zischg(09.03.2007).Thestudyareaistheski
resortintheforegroundofthepicture.
161
PermaNET–CasestudiesintheEuropeanAlps
Fig.3–OverviewofthestudyareaUpperSuldenValley.Theblacklinesindicatethelocationofthechairsliftsof
theMadritschskiresort.Orthoimage2008.
Fig.4.–OverviewofthestudyareaUpperSuldenValley.HillshadeoftheairͲborneLidarͲDEM2006.Thered
circleshowsthelocationofthepillarno.12oftheskilift"Madritschjoch"mentionedinthetext.Thegreendots
showthelocationoftheGSTmeasurementdevices(UTLdataloggers).
162
PermafrostResponsetoClimateChange
2. Permafrostindicatorsandrecentthermalandgeomorphicevolution
Themeasurementsofthetemperaturesatthebottomofthesnowcoverin1992and1996showed
the main areas with probable presence of permafrost. Geophysical measurements (seismic
refraction)andtheconstructionoftheskiliftsprovedtheexistenceofcompacticelensesinthearea
aroundthepillarno.12oftheskilift“Madritschjoch”.InAugust1992,massiveicewasfoundduring
thefoundationofthispillar(Fig.5).
Fig.5–Excavationworksforthefoundationofthepillarno.12oftheskilift"Madritschjoch"inAugust1992.
PhotographbyM.Maukisch.Source:Stötteretal.(2003).Groundicewasobservedintheconstructionsiteand
underthemoraineattheleftoftheconstructionsite.
Thefirstmeasurementsofthetemperaturesatthebottomofthesnowcover(BTS)intheareawere
carriedoutin1992and1996bymeansofmobiledevicesinthemonthsFebruaryandMarch.Since
2004,themeasurementshavebeenrepeated.Duringthewinterhalfyearsbetween2004and2008
themeasurementshavebeenrepeatedonlyinthepartswhereasnowdepthofatminimum60cm
wasexistent(Figs.6and7,Table1).
Table1–SummaryofthefiveBTSͲmeasurementcampaignsinthestudyareaUpperSuldenValley.
Year
Measurement
date/period
NumberofBTSͲ
measurements
Probable
permafrost(n)
Possible
permafrost(n)
Nopermafrost(n)
1992
March1992
371
227
58
34
1996
March1996
24.02.,03.03.,
16.03.,07.04.
25.04.
09.03.,27.03.,
29.03.
06.03.,07.03.
184
157
19
8
70
27
9
34
51
4
6
38
249
133
51
65
2004
2006
2007
2008
Allyears
236
73
37
89
1161
621
180
268
163
PermaNET–CasestudiesintheEuropeanAlps
Fig.6–ResultsoftheassessmentofpermafrostexistenceusingBTSmeasurementsin1992,1996and2004.
164
PermafrostResponsetoClimateChange
Fig.6–ResultsoftheassessmentofpermafrostexistenceusingBTSmeasurementsin2007,2008andallyears.
165
PermaNET–CasestudiesintheEuropeanAlps
Since 2006, the ground surface temperatures (GST) have been monitored continuously by 10
miniature temperature dataloggers situated in different parts of the study area (UTL datalogger,
logginginterval1hour,forlocationsseeFig.4).
ThecomparisonoftheBTSmeasurementsofthedifferentyearsshowedanincreaseoftemperatures
at the bottom of the snow cover in the area near the mentioned pillar no. 12 of the ski lift
“Madritschjoch”.
The GST measurements in this area showed a high interannual variability. Despite this fact the
followingpatternscouldbefound:TheupperpartoftheslopeoftheHintereSchöntaufpeakshows
constantly negative temperatures (ca. Ͳ6°C) over all observed periods. The lowest parts of the hill
betweenthebottomandtheupperstationoftheskilift“Madritschjoch”showedanincreaseofthe
temperaturesovertheyears.
In the years before the construction of the ski lift, topographic surveys had been made. These
measurementshavebeenrepeatedregularlysincetheconstructionoftheskilift.Inthistimeperiod
between1992and2004,thesurfaceoftheareasinthealignmentoftheskilift“Madritschjoch”that
are covered by debris were supposed to subsidence processes. In the vicinity of pillar no. 12, the
surfacesaggedfor4m(topographicsurveysbytheskiresortoperator).Thissubsidence ofsurface
was due to the melting of ground ice. In the vicinity of pillar no. 12 geomorphologic evidences for
surfacesubsidencehavebeenobserved(Fig.7).
Fig.7–Photographofsubsidenceprocessesinthevicinityofpillarno.12oftheskilift"Madritschjoch"inJuly
2006.PhotographbyA.Zischg.
The foundation of the pillar moved sideward and disarranged the position of the pillar no. 12.
Therefore,thepillarhadtobeadjustedseveraltimessince1992untilthefoundationofthepillarwas
reͲconstructed by means of a deeper foundation reaching the bedrock under the debris cover
(Fig.8).
166
PermafrostResponsetoClimateChange
Fig. 8 – Photograph of the reͲadjustment of the position of the pillar no. 12 of the ski lift "Madritschjoch".
PhotographbyA.Zischg.
During the construction of the ski lift, the ridge of debris material alongside the skilift (Fig. 9) had
beengrabbedslightlywithanexcavator.In1996,theridgeshowedanoutcropofmassiveiceonits
lateral part exposed towards the ski lift. The slope was nearly vertical. In the meantime the ridge
slumpeddown.Theslopeexposedtowardsthealignmentoftheskiliftisrecontouredandflattened.
Theoutcropoficedisappeared.
Fig.9–Photographofthedebrisridgealongtheskilift"Madritschjoch"inJuly2006.PhotographbyA.Zischg.
Theredarrowshowsthelocationwithoftheobservedslopedeformation.
167
PermaNET–CasestudiesintheEuropeanAlps
Inthesteeperpartsoftheareascoveredwithdebris,someevidencesforslopemovementscouldbe
observed(Fig.10).Theevidencesformovingdownwardsoftheslopeweremorefrequentlyinthe
areasthatareshowingwarmergroundtemperaturesofthemeasurementsduringthelastyears.The
geomorphicsignsforslopemovementsinthisareawereobservedforthefirsttimein2006.
Fig. 10 – Photograph of evidences for slope movements in the active layer of the southͲwestern slope of the
peakHintereSchöntaufspitzeintheskiresortSuldenͲMadritschinJuly2007.PhotographbyA.Zischg.
3. Possiblefuturethermalresponsetopredictedclimatechange
Theobservationsofthesurfacesubsidencearerelevantfortheinfrastructureoftheskiresort.With
sometechnicalefforts,theproblemforthestabilityofthefoundationofapillaroftheskiliftdueto
thisgeomorphicphenomenonofsubsidencecouldbehandled.Thephenomenonhasacceleratedin
the years from 2000 to 2007. In the vicinity of the pillar no. 12 most probably the ground ice has
beenmeltedtotally.Therefore,thefurthersubsidenceofthesurfacenearbyofthepillarisfinished.
However,thiscanbeconcludedonlyforthisspecificlocationinthestudyarea.Inotherareaswhere
groundiceisstillpresent,thedegradationprocesswillcontinuewiththeincreaseoftemperatures.
AftertheanalysesprovidedinChapter2,thenumberoffrostdaysintheMadritschskiresortislikely
to decrease for 15 days and the number of ice days will decrease for 17Ͳ19 days. The freezeͲthaw
days will increase about 3Ͳ4 days. This will have consequences for a further continuation of the
permafrostdegradationprocess.The monitoringofthe permafrostdegradationin thisareawillbe
continued.Incaseofabeginningsubsidenceprocessinotherpartsofthestudyarea,thecourseof
thiseventwillbeobserved.
168
PermafrostResponsetoClimateChange
References:
Stötter J., 1994: Veränderungen der Kryosphäre in Vergangenheit und Zukunft sowie Folgeerscheinungen –
Untersuchungen in ausgewählten Hochgebirgsräumen im Vinschgau (Südtirol). Habilitationsschrift,
München.
Stötter J., Fuchs S., Keiler M., Zischg A., 2003: Oberes Suldental. Eine Hochgebirgsregion im Zeichen des
Klimawandels. In: E. Steinicke (ed.): Geographischer Exkursionsführer Europaregion Tirol, Südtirol,
Trentino. Spezialexkursionen in Südtirol. Innsbrucker Geographische Studien Band 33/3, 239Ͳ281,
Innsbruck
169
PermafrostResponsetoClimateChange
4.
Synthesis
Citationreference
LiebG.K.,KellererͲPirklbauerA.(2011).Chapter4:Synthesisofcasestudies.InKellererͲPirklbauerA.
et al. (eds): Thermal and geomorphic permafrost response to present and future climate change in
the European Alps. PermaNET project, final report of Action 5.3. OnͲline publication ISBN 978Ͳ2Ͳ
903095Ͳ58Ͳ1,p.170Ͳ177.
Authors
Coordination:GerhardKarlLieb
Involvedprojectpartnersandcontributors:
Ͳ InstituteofGeographyandRegionalScience,UniversityofGraz,Austria(IGRS)–GerhardKarl
Lieb,AndreasKellererͲPirklbauer
Ͳ Institut de Géographie Alpine, Université de Grenoble, France (IGAͲPACTE) – Philippe
Schoeneich
Ͳ EDYTEM,UniversitédeSavoie,France(EDYTEM)–PhilipDeline
Ͳ Regional Agency for the Environmental Protection of the Aosta Valley, Italy (ARPA VdA) –
PaoloPogliotti
Content
Summary
1. Casestudies:Methodsandoverallresults
2. Thermalpermafrostreactioninthepastandfuture
3. Geomorphicpermafrostreactioninthepastandfuture
References
170
PermafrostResponsetoClimateChange
Summary
In the framework of Action 5.3 of the PermNET projects investigations on the thermal and
permafrostresponsetoclimatechangewerecarriedoutin13testsitesdistributednearlyallover
the Alps. This research work was based on a great variety of methods ranging from
geomorphological mapping over monitoring of ground surface temperature to borholes thus
makingtheresultswellreliable.Nearlyallhypothesisestablishedintheinitialphaseofthework
could be verified and quantified in at least one of the case studies. From this the following
conclusionscanbedrawn:
Thermalpermafrostreactions
An increase in ground temperatures and hence permafrost warming as a response to climate
warmingcanalreadybeobservedandwillcontinueinthefuture.However,thereisalsoastrong
control of snow cover to the thermal regime of the ground thus complicating the relationship
betweenclimatewarmingandpermafrostwarmingordegradation.Air,groundandpermafrost
temperaturesaswellassnowcovershouldbemonitoredatasmuchlocationsaspossible.
There is already a lot of evidence of thawing of permafrost in the Alps which leads and will
increasingly lead to a reduced spatial extent of permafrost and to active layer thickening.
However, little is yet not known about the assumed increasing ground water circulation and
pressurewhichshouldbeonefocusoffutureresearch.
Inspecificaltitudinalbeltsthenumberoffreeze/thawcyclesaswellasthedurationandintensity
offreezingandthawingperiodswillchangesignificantly.Thusthesubsequentprocesseslikerock
fallswillshifttohigheraltitudesaffectingareaswhicharenotyetpronetotheseprocesses.From
thisitisadvisabletomonitorthethermalregimeofthegroundatmanysites.
Geomorphicpermafrostreactions
Rockglaciersreactwithasurprisinglyshorttimelagonairandgroundtemperaturevariations.It
canbeassumedthatmostrockglacierswillcreepfasterinthenextyearstodecadesandthen
will become climatically inactive due to permafrost degradation. The surface velocity of rock
glaciers should be monitored at least at the sites in which infrastructure is placed on rock
glaciers.
Thedisplacementmodeofrockglaciersalreadychangesandwillcontinuetochangesignificantly
inthenextdecades.Especiallysurfaceloweringcanbeobservedatseveralsitesduetomelting
ofthepermafrostice.In thefuturecollapseoficerichrock glacierswilloccurmorefrequently
thus endangering infrastructure. Damage can only be avoided if the internal structure of the
permafrostusinggeophysicaltechniquesiswellknown.
Volumeandextentofdestabilizedmaterialsincreaseasaresponsetoactivelayerthickeningand
decreasingpermafrostextent.Thusthedispositiontogravitativeprocessesincreasesmakingthe
reevaluationofexistinghazardprotectingmeasuresnecessary.
Increasing frequency and magnitude of mass movement events are clearly evident. A further
increaseispossible,ashiftofrockfallscarstohigherelevationsevenveryprobable.Monitoring
andmodellingofthesesprocesseswillhelptoreducethehazard.
The melting of ice in thawͲsensitive permafrost makes surfaces instable thus leading to
subsidenceinflatareasorongentleslopesandtodifferenterosionalprocessesonsteepslopes.
The consequence is damage of infrastructure if the internal structure of the permafrost is not
known.
171
PermafrostResponsetoClimateChange
1. Casestudies:Methodsandoverallresults
In the 13 case studies of Action 5.3 high mountain permafrost has been investigated by a great
methodologicalvariety(Tab.1)comprisingnearlyalltechniqueswhichareavailable.Thustheresults
are well reliable, particularly since all the case studies also provide similar evidences from other
study sites situated within and without the Alps (see the respective references). According to the
thematic aspect of Action 5.3 ground surface temperatures (GST) play a crucial role and thus have
been used in all of the case studies. GST is the key parameter in giving information on how the
warming of the atmosphere is coupled with the thermal regime of the ground. GST can be easily
measuredbycheapandtoughequipment(miniaturedataloggerMDL).Thereforethissimplebutin
terms of its relevance for understanding thermal (and subsequently geomorphic) changes in
permafrostareasveryefficientmethodcanberecommendedforevenmorewidespreadusageinthe
future.
Table1–OverviewofpermafrostrelatedmethodsusedinmorethanoneofthecasestudiesofAction
5.3 (Abbreviations: BTS = Basic temperature of winter snow cover, ERT = electrical resistivity
tomography,GPR=groundpenetratingradar,GST=groundsurfacetemperature,MDL=miniature
datalogger,TLS=terrestriallaserscanning).Annotations:*Modellingofpermafrostdistributionwas
thetaskofAction5.1inthePermaNETproject.**Atthestudysiteswhichwerenotequippedwith
automaticweatherstationsmeteorologicaldatafromstationsinthevicinityhavebeenused.***In
somestudysitesmeasurementstakeplaceinshallowboreholes (downto depthsof+/Ͳ1m)which
areincludedinthiscategory.****OnlytheseBTSsitesarelistedwherespecialBTScampaignswere
carriedout(andBTSvalueswerenotjusttakenfromGSTmeasurements).
Method
Geomorphologicalmapping
Continuousphotographic
documentation
Numericalpermafrostmodelling*
Automaticweatherstation
GSTlogging(usingMTD)
BTSmeasurement****
Spring(water)temperature
measurement
Dischargemeasurementand
chemicalanalysisofwater
Geodeticmeasurement
PhotogrammetryandTLS
Geophysicalsoundings(inmost
casesgeoelectrics/ERTorGPR)
Borehole
Casestudy(chapter)
3.2.,3.3.,3.5.,3.7.
Gainedinformation
Geomorphologyofstudyareas
3.2.,3.3.,3.8.
Snowcover,rockfallevents
3.2.,3.3.
3.2.,3.3.,3.6.,3.8.,3.9.,3.10.,
3.13.
Spatialdistributionofpermafrost
Atmosphericconditions**
GSTandnearGST***(evidenceof
permafrost)
3.2.,3.3.,3.5.,3.7.,3.11.,3.14.
BTS(evidenceofpermafrost)
Watertemperature(evidenceof
3.3.,3.5.,3.11.,3.12.,3.13.
permafrost)
Runoffandchemicalpropertiesof
3.5.,3.13.
water
3.3.,3.5.,3.6.,3.7.,3.11.,3.12.
Displacementofsurface
3.3.,3.5.,3.8.,3.13.
Displacementofsurface
3.2.,3.3.,3.5.,3.6.,3.7.,3.8.,3.13., Internalstructureand
3.14.
temperatureofpermafrost
Internalstructureand
3.4,3.7,3.8.,3.10.,3.13.
temperatureofpermafrost
allcasestudies
Summarizingtheresultspresentedinthecasestudiesithastobementionedthatwithrespecttothe
aimofidentifyingandquantifyingtheresponseofhighmountainpermafrosttoclimatechangeone
problemremainsunsolved–itisthelackoflongtermdataconcerningpermafrost.Mostofthesites
werenotestablishedbeforearound2005andthereise.g.noGSTrecordlongerthan10yearsinany
studysite(withtheexceptionofSonnblickwherethemeteorologicalobservatoryprovidesalsoGST
172
PermafrostResponsetoClimateChange
datawhichhavenotbeenconsideredinChapter3.4.).Thuswearefarawayfromhavingsufficient
informationonlongtermthermalreactionofpermafrost–astatementwhichcanonlyleadtothe
conclusion that is absolutely necessary to establish a long term monitoring network as it was the
mainobjectiveofthePermaNETproject.
The only aspect showing a record of a few decades for at least some sites (the longest one at
Hochebenkar since 1938, cf. Chapter 3.5.) is the surface velocity of rock glaciers. Natural scientists
becameawareofcreepingrockmassesalongtimebeforetheywererecognisedasbeingthemost
striking features of high mountain permafrost. The results of the existing geodetic and
photogrammetric measurements which are presented and discussed especially at the examples of
Doesenrockglacier(Chapter3.3.)andLaurichardrockglacier(Chapter3.6.)clearlyrevealsignificant
geomorphodynamicchangesoverthelastdecadeswhichcanonlybeexplainedwithchangesinthe
thermalregimeofthepermafrost.
Inordertoprovideacloserlooktothe“overallresults”itishelpfultodistinguishbetweendifferent
typesofpermafrostenvironmentswhichhavebeeninvestigatedinthestudysites(Tab.2).Mostof
the work has been done on active rock glaciers which have become the most important object of
permafrostresearchinhighmountains.Thustheprocessestakingplaceinrockglaciersystemsare
understoodincreasinglywellalthough,ofcourse,alotquestionsstillremainsopen.However,there
are still fewer permafrost investigations outside of rock glaciers leading to a relative lack of
information on the other environment types which is regrettable due to the fact that most of the
infrastructure–mainlyfortouristicpurposes–isbuiltintheseenvironmentandnotonrockglaciers
whoseunfavourableconditionsforconstructionworkisinthemeantimewellknowntotechnicians
leadingthemtoavoidrockglaciersurfaceswhereverpossible.
Table 2 – Overview of permafrost environments investigated by the case studies of Action 5.3
(Annotations: Some of the case studies refer to different types of permafrost environments, in the
tableonlythemostsignificantonesareindicated).
Typeofpermafrostenvironment
Casestudy(chapter)
Activerockglacier
3.3.,3.5.,3.6.,3.7.,3.11.,3.12.,
3.13.
Slope
3.2.,3.3.,3.10.,3.14.
Rockwall
3.8.,3.9.
Summitandridge
3.2.,3.4.,3.8.,3.9.
Annotations
Debrisortalusderivedrock
glacierswhichareatleastpartly
active,boulderysurface
Slopesoutsideofactiverock
glaciers,mostlycoveredbyglacial
orperiglacialsediments
Steeprockfaceswithlittleorno
coveragebysediments,snowor
ice
Summitareasmostlyconsistingof
heavilyweatheredbedrock,partly
withmountaintopdetritus
The general thermal reaction of permafrost to climate change can be described in the way that
permafrosttemperaturesincrease,activelayersthickenandpermafrostthusbecomesmoreprone
todegradation.Basedonthisthemainstatementsonthefourenvironmentaltypesderivedfromthe
resultsofthecasestudiescanbesummarizedasfollows:
x
Active rock glaciers react surprisingly fast on annual or seasonal temperature variations in
thewaythatwarmerconditionsresultinhighersurfacevelocities.Thisisduetothefactthat
deformationratesincreasewithtemperatureaswellastothepresenceofmoreliquidwater
intherockglaciersystem.
173
PermafrostResponsetoClimateChange
x
Onslopestheactivelayerthickeninganddegradationofpermafrostleadstodestabilization
ofsedimentswhichthenarepronetoerosionalprocessesofdifferentkind(especiallydebris
flows)whentheinclinationishigh.Inflatterterrainfrostsettlingandsubsequentsubsidence
ofthesurfaceisthemostimportantprocessasfaraspermafrostisthawͲsensitve.
x
Rock walls free of sediments or cryospheric cover are directly coupled to atmospheric
changes which therefore have direct consequences on the thermal regime and thus
geomorphic processes inrock faces. Depending on the rock type and its properties (strata,
fracturing,clefts)rockfallsofincreasingfrequencyandmagnitudearelikelytooccur.
x
On summits and ridges the conditions are similar to that in rock walls. Regardless of the
existenceofmountaintopdetritusthetendencyofsummitsandridgestocollapseisgiven.
2. Thermalpermafrostreactioninthepastandfuture
2.1Increasinggroundtemperatureandpermafrostwarming
Theentireevidenceavailablesofar–notonlyfromthecasestudiesofAction5.3butalsofromthe
literature(Harrisetal.2003)–clearlyshowsthattherisingairtemperaturescausesanincreaseof
GSTsundviaheatfluxtothegroundanincreaseofpermafrosttemperatures.Asrecordedinthecase
studiesallmeasuredpermafrosttemperaturesarequitecloseto0°C(e.g.Ͳ1.02°Casmeanvaluefor
the period 2008Ͳ10 at the permafrost table in the deep borehole at Cime Bianche Pass, calculated
fromTable2inChapter3.10.).Thismeansthatonlyaslightfurtherincreaseintemperaturewould
be sufficient to induce permafrost degradation in vast areas currently underlain by permafrost. A
modelapproachonthisaspectisdiscussedinChapter3.7.
Ontheotherhandmanyofthecasestudieshaveshownthatthereisobviouslynolinearcorrelation
between rising air temperatures and rising permafrost temperatures. Instead of this the
characteristics of the substrate as well as the snow cover play a crucial role for the temperature
regime in the ground. Especially the latter aspect has been elaborated intensively in all the case
studies where high resolution GST measurements using MDL have been carried out. So the
conclusionthat“theevolutionofthepermafrostwillnotonlydependontheairtemperature,butwill
bestronglyinfluencedbytheevolutionofthesnowcover,especiallyitsearlyorlateonsetinautumn.
Alateonsetofthesnowcovercanatleastpartiallycompensateariseinairtemperature”(Chapter
3.6.)canbeappliedtoallthecasestudiesandfinallycanbeconsideredasarulevalidfortheentire
Alps.Yetthishastobequalifiedbythefactthattherearehardlyany(andwithinAction5.3noneat
all)longtermdataseriesofpermafrosttemperatureavailablesofar.
2.2Thawingofpermafrostwithdifferenteffects
ThawingofpermafrostintheAlpswhichhasalreadybeenprovenbyalotofevidenceisassumedto
createthefollowingeffects.(i)Thespatialextentofpermafrostisreduced:Thisfactcane.g.beseen
attheSuldenValleystudysite(Chapter3.14.)wherethepillarofaskiliftwasoriginallyplacedona
buried body of massive ice which in the meantime has disappeared so that the pillar could be
reconstructedontheunderlyingbedrock.Unfortunately,duetothelackofknowledgeonprevious
permafrostdistribution,thecompletedegradationofpermafrostinrecentyearscanundoubtedlybe
provenonlyinalimitednumberofcases.However,thenowavailableinformationontheexistence
of permafrost not only at specific sites – as documented e.g. within Action 5.3 – but also for the
entire Alps will provide the possibility to observe the (probably accelerated) future degradation
processindetail.(ii)Activelayerthickeninghasbeendetectedinsomeofthestudysites,e.g.well
documentedbyrepeatedgeoelectricalsoundingsonLaurichardrockglacier(Chapter3.6.).However,
alsothisstatementcontainssomeuncertaintiesbecauseofthelackoflongtermdataavailability.It
hastobekeptinmindthattheinterannualvariabilityoftheactivelayerdepthisveryhighdepending
174
PermafrostResponsetoClimateChange
especiallyonthebeginning,durationandthicknessofthewintersnowcover.Thiscane.g.beseenin
the respective graphs from Cime Bianche Pass (Chapter 3.10.) in which the active layer thickness
shows a great temporal variation but not yet a trend to increase. (iii) Increasing ground water
circulation and pressure has been worked out as a possible contribution to increasing rates of
permafrost creep on rock glaciers at several study sites (e.g. Doesen Valley, Chapter 3.3., and
Hochebenkar, Chapter 3.5.). However, there is not yet any unambiguous proof for this assumption
becauseatleastinthecasestudiesinvestigatedinAction5.3therewasnospecificresearchonthe
hydrologicalsystemwithinpermafrostbodies.
Summarizingfromtheconsiderationsongroundtemperatures,permafrostwarmingandpermafrost
thawing given in this and the previous subchapter the conclusion can be drawn that the thermal
regime of permafrost should be monitored more intensively in the future. This means that
measurementsofGSTandtemperaturesindifferentdepths(inboreholes)havetobecarriedoutat
moresitesthantodayand–aboveall–overlongerperiodsthanithashappeneduntilnow.Afurther
focus of future research should be the investigation of the existence, dynamics and significance of
liquidwaterinpermafrostareas.
2.3Changesinthenumberoffreeze/thawcyclesandmagnitudeoffreezingandthawingperiods
The basic information on this topic is given in Chapter 2 providing data on the numbers of freeze
days, ice days and freezeͲthaw days for the entire Alpine Arc. The analysis is based on the period
1961Ͳ90 and the difference in the number of these days to the period 2021Ͳ2050 is given. E.g.
consideringthenumberoffrostdaysadecreaseof9Ͳ18daysperyearbetweentheperiods1961Ͳ90
and 2021Ͳ2050 is expected. The change of freeze/thaw days which are of specific relevance for
geomorphicprocesses(e.g.frostweathering,rockfallactivity)isestimatedbetweenͲ4and+5days
peryear.Thisdoesnotseemtobeahighvalue,yetonemustkeepinmindthealtitudinalshiftof
temperature beltsupwards.Asithasbeenpointed oute.g.in thestudyarea MontBlanc (Chapter
3.9.)thesubsequentprocesseslikerockfallswillaffecthigheraltitudeswhicharenotyetproneto
theseprocesses.Inanycasealsofromthispointofviewitisadvisabletomonitorthethermalregime
ofthegroundatasmanysitesaspossible.
3. Geomorphicpermafrostreactioninthepastandfuture
3.1Changesintherateofrockglacierdisplacement
Allthe7casestudiesonrockglaciers(Tab.2)haverevealedthefactthatthedynamicsofrockglacier
creepstronglydependsontemperaturevariations.Themeasuredsurfacevelocitiesonrockglaciers
react on air temperature and especially on GST variations within a surprisingly short time lag.
According to the Action 5.3 studies this time ranges between less than one and a few years. As
reported e. g. from Doesen rock glacier (Chapter 3.3.) interannual temperature variations of 1Ͳ2°C
can result in velocity changes of approx. +/Ͳ20%. The conclusion for the evidence available on
surface velocity changes on rock glaciers can be taken from Chapter 3.6.: “Rock glaciers react to
climate and show interannual velocity variations. Their reaction time is thus much shorter than
previously assumed. Velocity variations are linked to temperature variations: an increase in
temperature induces an increase in velocity. The air temperature only partly explains the observed
groundsurfacetemperatureandvelocityvariations.Thegroundsurfacetemperatureshowsthebest
linkwithvelocityvariations,withatimelagofaround1year.Thesnowcoverexplainsmostofthe
differencebetweenairtemperatureandgroundsurfacetemperature,andthusappearsasthemain
drivingfactorbothforgroundsurfacetemperatureandforvelocityvariations”.
Forthenearfuture(nextyearstodecades)itcanbeassumedthatmostrockglacierwillshowatrend
to faster surface velocities although there will be subordinate periods of reduced dynamics as a
175
PermafrostResponsetoClimateChange
consequencesofcolderyears.Afterthisphaseofincreaseddynamicspermafrostdegradationwith
meltingoftheicewillreducetheicecontentofrockglaciersuntilthesubstrateisnotsupersaturated
iniceanymore.Giventhissituationtherockglacierwillfallintothestatusofaclimaticallyinactive
one,i.e.themovementwillstopandtheremainingicewillslowlymeltaway.Dependingonthesize
andelevationoftherockglacierthiswillprobablylastseveraldecadestocenturies.
Verticaldisplacementonrockglaciersurfacesmaybeduetothedynamicbehaviourofrockglaciers
(areaswithextendingorcompressing“flow”).However,ifthereisanetloweringoftheentirerock
glaciersurfacetherecanbenodoubtthatthereisaniceloss.Suchasituationise.g.describedfor
HochebenkarrockglacierinChapter3.5.,butitalsoappliese.g.toDoesenrockglacier(Kaufmann&
Ladstädter2007;Kaufmannetal.2007).Ithastobeexpectedthatasurfaceloweringduetomeltingof
the ice will occur on most of the alpine rock glaciers in the first phase of acceleration due to
permafrostwarmingaswellasinthesecondphaseoficedisappearance.
Themeasurementofsurfacedisplacementsonrockglaciersshouldbecontinuedwhereitisalready
carried out in order to achieve long term data series. Furthermore such monitoring should be
establishedatthefewsiteswhereinfrastructureisplacedonthesurfaceofrockglaciers.
3.2Changesindisplacementmodeofrockglaciers
The displacement mode of rock glaciers already changes as it has been described considering the
verticalsurfacechangesintheprevioussubchapter.Thesealreadyongoingprocesseswillcontinuein
thenextdecadesaccompanyingtheaccelerationandsubsequentlythedeactivationofrockglaciers.
Withregardtotheaccelerationbasalslidingofrockglacierscanbetakenintoaccount(Hausmannet
al.2007)asaconsequenceofachanginghydrologicalsystem.However,asalreadymentionedabove
noempiricalfindingsonthisaspectareavailableinAction5.3.
Thusstatementsonlyonsurfaceloweringarepossiblewhichcanbeobservedatseveralsitesdueto
melting of the permafrost ice. In the future collapse processes on ice rich rock glaciers will occur
more frequently creating thermokarst structures which can already be observed on several alpine
rock glaciers (e.g. Murfreit Rock Glacier, Italy; Krainer & Mussner 2010), but not on the ones
investigatedinAction5.3.Collapseofcoursecancausedamagetoinfrastructurewhichcanonlybe
avoidediftheinternalstructureofthepermafrostusinggeophysicaltechniquesiswellknown.
3.3Changesinsolifluctionratesandcryogenicweathering
NoempiricalevidencehasbeenprovidedonthesetwotopicsbythecasestudiesofAction5.3.
3.4Changesinvolumeandextentofunstable/unconsolidatedmaterials
As it has been shown e.g. in the Sulden Valley study site (Chapter 3.14.) volume and extent of
destabilized materials increase as a response to active layer thickening and decreasing permafrost
extent. Because more loose material is present meteorological events like heavy rainfalls can
mobilize these sediments. Thus the disposition to gravitative and erosional processes has already
increasedatmanylocationsandwillfurtherincreaseinthefutureaffectingmoreandlargerareas.In
many cases these changes will certainly make the reͲevaluation of existing hazard protecting
measuresnecessary.
176
PermafrostResponsetoClimateChange
3.5Changesinfrequencyandmagnitudeofmassmovementevents
This aspect has been highlighted in much detail by the Mont Blanc study in Chapter 3.9. even at
differenttimescales.Theresultsundoubtedlyrevealthattheincreasingfrequencyandmagnitudeof
massmovementeventscanonlybecausedbypermafrostdegradation.Thustheconclusionscanbe
taken from this chapter: “… rockfalls from highͲAlpine steep rockwalls are expected to occur more
frequently,withvolumesthatarelikelytoincrease.Thefrequencythatiscurrentlyincreasingshould
maintain the same trend in the next decades, due to the deepening of the active layer as the
temperaturerise…intheAlpsforthe21thcenturywillbehigherbynearly1°Cthantheglobalone….
Moreover, heat advection by triggering of water circulation at depth along thaw corridors would
increase the collapsed volumes”. Furthermore for purposes one must be aware of the fact that
rockfallscarswillshifttohigherelevations.Thereforemoreinitiativesofmonitoringandmodellingof
thesesprocessesshouldbecarriedoutinordertoprovideknowledgeforreducingrockfallhazards.
3.6Surfaceinstabilitiescausedbythermokarstprocesses/meltingofpermafrostice
Surfaceinstabilitiesareofspecialsignificanceinpermafrostareaswhereinfrastructure–intheAlps
in most cases constructions and edifices for touristic needs – is present. Thus the most striking
examplesofAction5.3aretheMadritschskiingareainSuldenValley(Chapter3.13)aswellasthe
observatoryandtouristhutonthesummitofHoherSonnblick(thoughChapter3.4.doesnotprovide
muchinformationonthisaspect).MeltingoficeinthawͲsensitivepermafrost(intheAlpinecontext
permafrost supersaturated with ice) makes surfaces instable thus leading to subsidence (ground
settling) in flat areas or on gentle slopes. Additionally different erosional processes may occur on
steepslopes due tothesameprocess.Theconsequenceisdamagetoinfrastructureif the internal
structure of the permafrost is not sufficiently known and thus measures to avoid such problems
cannotbetakenintime.
Acknowledgements.ThePermaNETprojectispartoftheEuropeanTerritorialCooperationandcoͲ
funded by the European Regional Development Fund (ERDF) in the scope of the Alpine Space
Programmewww.alpinespace.eu
References:
Harris C., Vonder Muhll D., Isaksen K., Haeberli W., Sollid J.L., King L., Holmlund P., Dramis F.,
GuglielminM.&PalaciosD.,2003:WarmingpermafrostinEuropeanmountains.Globaland
PlanetaryChange,39,215Ͳ225.doi:10.1016/j.gloplacha.2003.04.001.
Hausmann H., Krainer K., Brückl E. & Mostler W. 2007: Internal Structure and Ice Content of
Reichenkar Rock Glacier (Stubai Alps, Austria) Assessed by Geophysical Investigations.
PermafrostandPeriglac.Process.18:351Ͳ367.
KaufmannV.&LadstädterR.,2007:Mappingofthe3DsurfacemotionfieldofDoesenrockglacier
(Ankogel group, Austria) and its spatioͲtemporal change (1954Ͳ1998) by means of digital
photogrammetry.GrazerSchriftenderGeographieundRaumforschung43:127Ͳ144.
Kaufmann V., Ladstädter R. & Kienast G., 2007: 10 years of monitoring of the Doesen rock glacier
(Ankogelgroup,Austria)–Areviewoftheresearchactivitiesforthetimeperiod1995Ͳ2005.
Proceedings,5thMountainCartographyWorkshop,29MarchͲ1April2006,Bohinj,Slovenia,
129Ͳ144.
Krainer K. & Mussner L., 2010: Blockgletscher und Naturgefahren: Der aktive Blockgletscher
'Murfreit'indernördlichenSellagruppe,Dolomiten.Geo.Alp,7:p.99.
177