Download MATH00040 Formula Sheet Matrices and Vectors Matrix inverses: If

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MATH00040 Formula Sheet
Matrices and Vectors
a b
Matrix inverses: If ad − bc 6= 0, then
c d
!−1
=
Determinants:
det

a11 a12 a13
a11 a12
a21 a22

!
a
11 a12
=
a21 a22
a


22 a23


det  a21 a22 a23  = a11 a32 a33
a31 a32 a33
1
ad − bc
d −b
−c
a
!
= a11 a22 − a12 a21 .
a
21 a23
− a12 a31 a33
.
a
21 a22
+ a13 a31 a32
.
p
Length of a vector: If a = (a1 , a2 , a3 ), then kak = a21 + a22 + a23 .
Dot product: If a = (a1 , a2 , a3 ) and
, b3 ), then a · b = a1 b1 + a2 b2 + a3 b3 .
b = (b1 , b2
v
·
w
.
Angle between vectors: θ = cos−1
kvk· kwk
î ĵ k̂ Cross product: v × w = v1 v2 v3 , where v = (v1 , v2 , v3 ) and w = (w1 , w2 , w3 ).
w1 w2 w3 Eigenvalues: To find the eigenvalues of A, solve det(A − λI) = 0.
Eigenvectors: To! find the eigenvector v corresponding to the eigenvalue λ, solve Av = λv,
x
where v =
.
y
Complex numbers
Real part of a complex number: Re(a + bi) = a.
Imaginary part of a complex number: Im(a + bi) = b.
√
Modulus of a complex number: |a + bi| = a2 + b2 .
Complex conjugate of a complex number: a + bi = a − bi.
a + bi
a + bi c − di
Dividing complex numbers:
=
·
.
c + di
c + di c − di
c
UCD
2015/16
1 of 3
Polar form: a + bi = r(cos(θ)
+i sin(θ)), where r = |a + bi| and we find θ as follows.
b
First calculate φ = tan−1 . Then
a
θ = φ if a > 0 and b > 0,
θ = φ − π if a < 0 and b < 0
and
θ = π − φ if a < 0 and b > 0,
θ = −φ if a > 0 and b < 0.
Common values of tan−1 :
−1
tan (0) = 0,
−1
tan
1
√
3
=
π
,
6
tan−1 (1) =
π
,
4
tan−1
√ π
3 = .
3
De Moivre’s formula: [r(cos(θ) + i sin(θ))]n = r n (cos(nθ) + i sin(nθ)).
Roots of complex numbers: The n’th roots of r(cos(θ) + i sin(θ)) are
1
θ 2kπ
θ 2kπ
+ i sin
k = 0, 1, . . . , n − 1.
zk = r n cos
+
+
n
n
n
n
Differential Calculus
f (x)
f ′ (x)
c
0
xn
nxn−1
eax
aeax
1
x
a cos(ax)
ln(ax)
sin(ax)
cos(ax)
−a sin(ax)
Comments
Here c is any real number
Here we must have ax > 0
Note the change of sign
Table 1: Some common derivatives
′
The product rule for differentiation: (f
= f ′ (x)g(x) + f (x)g ′ (x).
g)(x)
′
f ′ (x)g(x) − f (x)g ′(x)
f
.
(x) =
The quotient rule for differentiation:
g
g 2 (x)
dy du
dy
=
· .
The chain rule for differentiation:
dx
du dx
The critical points of a function f occur at points x where f ′ (x)
√ = 0.
−b ± b2 − 4ac
The solutions of the equation ax2 + bx + c = 0 are x =
.
2a
′′
Classifying critical points: Local minima occur where f (x) > 0.
Local maxima occur where f ′′ (x) < 0.
f (xn )
.
The Newton-Raphson method: xn+1 = xn − ′
f (xn )
c
UCD
2015/16
2 of 3
Integral Calculus
Z
f (x)
k
f (x) dx
kx + c
1
xn+1 + c
n+1
ln(x) + c
1 ax
e +c
a
1
− cos(ax) + c
a
1
sin(ax) + c
a
xn
1
x
eax
sin(ax)
cos(ax)
Comments
Here k is any real number
Here we must have n 6= −1
Here we must have x > 0
Note the change of sign
Table 2: Some common integrals
Evaluating definite integrals: ZIf F is an antiderivative of f then
b
f (x) dx = [F (x)]ba = F (b) − F (a).
a
du
Integration by substitution: dx =
.
du/dx
Z
Z
′
Integration by parts:
f (x)g (x) dx = f (x)g(x) − f ′ (x)g(x) dx.
Z b
Volume of solid of revolution: V = π
f (x)2 dx.
a
Probability
Sum rule for probability: P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
P (A ∩ B)
.
Conditional probability: P (A|B) =
P(B)
n k
p (1 − p)n−k .
Binomial distribution: P (X = k) =
k
λk e−λ
Poisson distribution: P (X = k) =
.
k! a−µ
b−µ
Normal distribution: P (a 6 X 6 b) = P
.
6Z6
σ
σ
c
UCD
2015/16
3 of 3