Download Trigonometry Notes on the Double and Half Angle Identities. ( ) ( )

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometry
Notes on the Double and Half Angle Identities.
The Derivations of the Double and Half Angle Identities: To find the double angle identities, we just use the summation identities with both angles equal to A.
sin ( 2A ) = sin ( A + A ) = sin ( A ) cos ( A ) + cos ( A ) sin ( A )
= 2sin ( A ) cos ( A )
tan ( 2A ) =
=
tan ( A ) + tan ( A )
1 − tan ( A ) tan ( A )
2 tan ( A )
1 − tan 2 ( A )
cos ( 2A ) = cos ( A + A ) = cos ( A ) cos ( A ) − sin ( A ) sin ( A )
= cos 2 ( A ) − sin 2 ( A )
But, note on the last one, we could now use the Pythagorean identities on it.
cos ( 2A ) = cos 2 ( A ) − sin 2 ( A ) = (1 − sin 2 ( A ) ) − sin 2 ( A )
= 1 − 2sin 2 ( A )
cos ( 2A ) = cos 2 ( A ) − sin 2 ( A ) = cos 2 ( A ) − (1 − cos 2 ( A ) ) = cos 2 ( A ) − 1 + cos 2 ( A )
= 2 cos 2 ( A ) − 1
Thus, there are 3 double angle identities for cosine.
For the half angle identities, for sine and cosine, we take the last 2 double angle identities and solve for either sin ( A ) or cos ( A ) .
Then, we will make a substitution. Since, we will be replacing the variable, let’s start with the identities in x instead of A.
cos ( 2x ) = 1 − 2sin 2 ( x )
cos ( 2x ) = 2 cos 2 ( x ) − 1
2sin 2 ( x ) = 1 − cos ( 2x )
sin 2 ( x ) =
1 + cos ( 2x ) = 2 cos 2 ( x )
1− cos ( 2x )
2
sin ( x ) = ±
⎛A⎞
sin ⎜ ⎟ = ±
⎝2⎠
1− cos ( 2x )
2
±
1− cos ( A )
2
making A = 2x.
±
1+ cos ( 2x )
2
= cos 2 ( x )
1+ cos ( 2x )
2
= cos ( x )
1+ cos ( A )
2
⎛A⎞
= cos ⎜ ⎟
⎝2⎠
making A = 2x.
For the half angle identity for tangent, start by using the half angle identities above.
⎛A⎞
tan ⎜ ⎟ =
⎝2⎠
⎛A⎞
sin ⎜ ⎟
⎝2⎠
⎛A⎞
cos ⎜ ⎟
⎝2⎠
But, we can also make use of the double identities.
tan ( A2 ) =
( A2 )
=
cos ( A2 )
sin
=
±
±
1− cos ( A )
2
1+ cos ( A )
=±
2
1 − cos ( A )
1 + cos ( A )
.
sin ( 2( A2 ) )
( A2 ) cos( A2 )
sin ( A )
=
= 1+ cos ( A )
2 A
2 cos ( 2 )
1+ cos ( 2 ( A2 ) )
2sin
and
tan (
SCC:Rickman
A
2
( A )⎤⎦
1− cos ( A )
= sin ( A )
) = 1+ cos( A ) = 1+ cos( A ) 1− cos( A ) = sin (1A−)cos⎡⎣1− cos( A()A )⎤⎦ = sin ( Asin) ⎡⎣1−(cos
A)
sin ( A )
sin ( A )
1− cos ( A )
2
2
Notes on the Double and Half Angle Identities.
Page #1 of 4
The Trigonometric Double and Half Angle Identities: Thus, in summary,
The Trigonometric Double Angle Identities
The Trigonometric Half Angle Identities
cos ( 2A ) = cos ( A ) − sin ( A )
1 + cos ( A )
⎛A⎞
cos ⎜ ⎟ = ±
2
⎝2⎠
2
2
= 1 − 2sin 2 ( A )
1 − cos ( A )
⎛A⎞
sin ⎜ ⎟ = ±
2
⎝2⎠
= 2 cos 2 ( A ) − 1
sin ( 2A ) = 2sin ( A ) cos ( A )
tan ( 2A ) =
1 − cos ( A )
⎛A⎞
tan ⎜ ⎟ = ±
1 + cos ( A )
⎝2⎠
2 tan ( A )
1 − tan 2 ( A )
=
=
sin ( A )
1 + cos ( A )
1 − cos ( A )
sin ( A )
Example #1: Given cos ( A ) = - 23 , and A is in the 4th quadrant, evaluate a) cos ( A2 ) , b) sin ( A2 ) , c) tan ( A2 ) , d) sec ( A2 ) , e) cos ( 2A ) ,
f) sin ( 2A ) , and g) tan ( 2A )
►
First, find the quadrant for
A
2
cos ( A2 ) = ±
270° < A < 360°
135° <
Thus,
A
2
A
2
b)
a)
.
< 180°
nd
is in the 2 quadrant.
sin ( A2 ) = ±
1− cos ( A )
2
=-
1+ ( − 2 3)
2
=+
1− ( − 2 3)
2
=-
3− 2
6
=-
6
6
The selection of + or – was done based on the fact that
= 2 ( - 23 ) − 1
=
1
6
=-
e)
cos ( 2A ) = 2 cos 2 ( A ) − 1
c)
1+ cos ( A )
2
3+ 2
6
30
6
is in the 2nd quadrant.
A
2
sin 2 ( A ) = 1 − cos 2 ( A )
= 1 − ( - 32 ) = 99 − 54 =
2
= 89 − 1 = 89 − 99
1
=9
tan ( A ) =
sin ( A )
=
cos ( A )
5 9
-2 3
5
6
=-
1+ cos ( A )
=-
1− ( − 2 3)
=-
3+ 2
3− 2
1
cos A2
( )
=- 6
1+ ( − 2 3)
=-
5
1
=- 5
=
For parts f & g, we need sin(A) and tan(A) .
2
=
tan ( A2 ) = ±
d)
sec ( A2 ) =
1− cos ( A )
f)
sin ( 2A ) = 2sin ( A ) cos ( A )
g)
= 2 ( 95 )( - 32 )
5
9
2 tan ( A )
tan ( 2A ) = 1− tan 2 ( A )
=
20
=27
5
6
2 ( -5 6 )
1− ( -5 6 )
2
( -5 3)
= 1− ( 25
=
36 )
-60
36 − 25
=-
60
11
□
Example #2: Evaluate tan (15° ) using all 3 half angle identities for tangent.
►
tan (15° ) = ±
1− cos ( 30° )
1+ cos ( 30° )
=+
(2− 3 ) (2− 3 )
= 2+ 3 2− 3 =
( )( )
1−
1+
(
(
3 2
3 2
)
=
)
4− 4 3 +3
4−3
2− 3
2+ 3
sin ( 30° )
tan (15° ) = 1+ cos (30°) = 1+1 32 2 =
=
(
1
2+ 3
( 2− 3 )
=
) ( 2− 3 )
1
2+ 3
tan (15° ) =
=
2− 3
4 −3
1− cos ( 30° )
sin ( 30° )
=
1−
(
3 2
)
12
2− 3
1
= 2− 3
= 2− 3
= 7−4 3
(
Even though we got 2 different forms of the answer, they are actually equivalent, since 2 − 3
)
2
= 4−4 3+3= 7−4 3 .
□
SCC:Rickman
Notes on the Double and Half Angle Identities.
Page #2 of 4
Proving Identities:
Example #3: Prove cos ( 2x ) − cos ( x ) = -2sin 2 ( x2 ) ( 2 cos ( x ) + 1) .
►
cos ( 2x ) − cos ( x ) -2sin 2 ( x2 ) ( 2 cos ( x ) + 1)
2 cos 2 ( x ) − 1 − cos ( x )
⎛ 1 − cos ( x ) ⎞
-2 ⎜
⎟ ( 2 cos ( x ) + 1)
2
2 cos ( x ) − cos ( x ) − 1
⎝
⎠
( cos ( x ) − 1) ( 2 cos ( x ) + 1)
2
2 cos 2 ( x ) + cos ( x ) − 2 cos ( x ) − 1
2 cos 2 ( x ) − cos ( x ) − 1 = 2 cos 2 ( x ) − cos ( x ) − 1
□
Example #4: Prove tan ( 2x ) cos ( x ) ⎡⎣ 2 − sec 2 ( x ) ⎤⎦ = 2 cot ( x2 ) ⎡⎣1 − cos ( x ) ⎤⎦ .
►
tan ( 2x ) cos ( x ) ⎡⎣ 2 − sec2 ( x ) ⎤⎦ 2 cot ( x ) ⎡1 − cos ( x ) ⎤
2 ⎣
⎦
⎡ 2 tan2( x ) ⎤ cos ( x ) ⎡ 2 − (1 + tan 2 ( x ) ) ⎤
⎣
⎦ 2 ⎡⎢ tan1( x ) ⎤⎥ ⎡⎣1 − cos ( x ) ⎤⎦
⎣⎢ 1− tan ( x ) ⎦⎥
⎣ 2 ⎦
⎡ 2 tan2( x ) ⎤ cos ( x ) ⎡ 2 − 1 − tan 2 ( x ) ⎤
⎡
⎣
⎦ 2 1− cos x1 sin x ⎤ ⎡⎣1 − cos ( x ) ⎤⎦
⎢⎣ 1− tan ( x ) ⎥⎦
⎢⎣ ( ( )) ( ) ⎥⎦
⎡ 2 tan2( x ) ⎤ cos ( x ) ⎡1 − tan 2 ( x ) ⎤
sin ( x )
⎣
⎦ 2 ⎡ 1− cos ( x ) ⎤ ⎡⎣1 − cos ( x ) ⎤⎦
⎢⎣ 1− tan ( x ) ⎥⎦
⎣
⎦
2 tan ( x ) cos ( x ) 2sin ( x )
2
( ) cos ( x )
sin ( x )
cos ( x )
2sin ( x ) = 2sin ( x )
□
Solving Equations: Example #5: Find all real solutions of sin ( 2x ) + cos ( x ) = 0 for x in [ 0°,360° ) .
►
sin ( 2x ) + cos ( x ) = 0
2sin ( x ) cos ( x ) + cos ( x ) = 0
cos ( x ) ⎡⎣ 2sin ( x ) + 1⎤⎦ = 0
cos ( x ) = 0
or
π 3π
x= ,
2 2
2sin ( x ) + 1 = 0
2sin ( x ) = -1
-1
2
7 π 11π
x=
,
6 6
sin ( x ) =
x=
π 3π 7 π 11π
, , ,
2 2 6 6
□
SCC:Rickman
Notes on the Double and Half Angle Identities.
Page #3 of 4
Example #6: Find all real solutions of 2 cos 2 ( x2 ) + cos ( x ) = 0 for x in [ 0, 2π ) .
►
2 cos 2 ( x2 ) + cos ( x ) = 0
⎛ 1 + cos ( x ) ⎞
2⎜
⎟ + cos ( x ) = 0
2
⎝
⎠
⎛ 1 + cos ( x ) ⎞
2⎜
⎟ + cos ( x ) = 0
2
⎝
⎠
1 + cos ( x ) + cos ( x ) = 0
2 cos ( x ) = -1
cos ( x ) = - 12
x=
2π 4π
,
3 3
□
Applications: Example #7: If a spray can sprays with an angle of θ at a distance of d from a surface, show that the formula for the area of the
sprayed region is given by a) Area = π d 2 tan 2 ( θ2 ) and also b) Area =
π d 2 ⎡⎣1− cos ( θ ) ⎤⎦
1+ cos ( θ )
. Assume the can is being held parallel to the surface.
Plus, c) find the area of the spray when the angle of spray is 45˚ at a distance of 30cm.
►
A cross section of the cone forms an isosceles triangle, which can be split into 2 right triangles. See figure. This leads to the
following.
r
b)
c)
a)
= tan ( θ2 )
d
2
2
2
2 θ
π ( 30cm ) ⎡⎣1− cos ( 45° ) ⎤⎦
Area = π r
Area = π d tan ( 2 )
Area =
r = d tan ( θ2 )
1+ cos ( 45° )
2
2
= π ( d tan ( θ2 ) )
1− cos ( θ )
900 π ⎡1− 2 2 ⎤
= π d 2 ⎡ ± 1+ cos ( θ) ⎤
= 1+⎣ 2 2 ⎦ cm 2
⎢⎣
⎥⎦
2
2 θ
= π d tan ( 2 )
1− cos ( θ )
900 π ⎡ 2 − 2 ⎤
= π d 2 1+ cos( θ)
= 2 +⎣ 2 ⎦ cm 2
(
=
π d 2 ⎡⎣1− cos ( θ ) ⎤⎦
1+ cos ( θ )
)
=
900 π ⎡⎣ 4 − 4 2 + 2 ⎤⎦
4+ 2
cm 2
= 150π ⎡⎣6 − 4 2 ⎤⎦ cm 2
= 300π ⎡⎣3 − 2 2 ⎤⎦ cm 2
□
SCC:Rickman
Notes on the Double and Half Angle Identities.
Page #4 of 4
Related documents