• Study Resource
• Explore

Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Transcript
```Harmonics mitigation and solutions
Summary
I. Introduction
II. Harmonics mitigation
solution
III. Case study
lV.Conclusion
Schneider Electric
2
I. Introduction
II. Harmonic mitigation solution
III. Case study
lV.Conclusion
Schneider Electric
3
I. Introduction
● The quality of electrical power is determined by the voltage
● High-quality voltage is the best guarantee for continuous operation of
equipment
The voltage signal must be perfect
at the source...
Line impedance
Type of installation
Length of cables
Internal impedance of
equipment...
Schneider Electric
... because distortion may occur at the
end of the line
The harmonic current
Power supply
technology
4
I. Introduction
II. Harmonic mitigation solution
III. Case study
lV.Conclusion
Schneider Electric
5
II. What is a harmonic waveform?
● Harmonic waveform is a distortion of the normal
Sinewave
● It is characterized by its distortion level
● For voltage (THD U - Total Harmonic Voltage
Distortion)
● For current (THD I - Total Harmonic Current
Distortion)
H1 = 50Hz
1.5
1.5
1
1
1
0.5
0.5
0.5
0
-0.5
=
0
-0.5
1.5
+
0
-0.5
-1
-1
-1
-1.5
-1.5
-1.5
Signal with harmonics
Schneider Electric
Hn = n x 50Hz
Fundamental H1
Harmonics H2 to Hn
THD (U or I) % = 100 x
6
II. Current distortion
● Waveform examples and harmonic
spectrum
Variable speed drive
100
50
0
Lifts…
● Computers
● Phones
● Lighting ...
Schneider Electric
H1
H5
H7
H11 H13 H17
H19 H21 H23
Danger
100
50
0
H1
H3
H5
H7
H9
H11
H13 H15 H17
Danger
7
II. The effects of harmonics
● Voltage distortion:
● Excessive temperature rise in motors
● Electrical noises
● Sensitive electronic equipment malfunction
● Increase in the apparent power and over-sizing of sources (UPS,
Genset, etc.), capacitors, cables...
● Derating of electrical equipment or over-sizing
● Accelerated ageing of equipment
● Flow of current in the neutral conductor and consequently in the
PEN:
● Excessive temperature rise in transformer
Schneider Electric
● Tripping of circuit breakers
8
II. The effects of harmonics
● Voltage distortion: influence of THDI on the THDU
LV
Main LV
Switchboard
Increased RMS current
(MLVS)
feeder MS1
feeder MS2
feeder MSn
Secondary
switchboard
Non-linear current
circulating in the cables
feeder S1
feeder S2
feeder S3
Final distribution
enclosure
M
Schneider Electric
Increased THDU
M
M
9
II. The effects of harmonics
● Increase in the apparent power and over-sizing of
sources
• Cos phi = Power factor = P/S
S=
P2 + Q2
ST (VA)
P (W)
φ
Q (var)
D harmonic
> S = apparent power
S (VA)
S=
P2 + Q2 + D2
• DPF = Displacement Power Factor - P1/S1 ( 50 Hz
fundamental current only)
• True Power factor = P/ST
Schneider Electric
10
II. The effects of harmonics
● Flow of current in the neutral conductor
● The H3 harmonic currents and multiples flow in the neutral
conductor.
● The cross-sectional area of the neutral conductor must be increased
(1.7 times that of the phases for switch-mode power supplies).
2
Phase 1
Phase 2
0
0
90
180
270
360
450
Phase 3
3rd Harmonic, phase 1
-2
3rd Harmonic, phase 2
I3,I9,I15
3rd Harmonic, phase 3
-4
Total 3rd Harmonic
-6
Schneider Electric
11
II. Harmonics mitigation solutions
● Electromechanical solutions
● Active filters
1
h3
Over-sizing of sources,
cables, etc.
1 - The harmonics are not
eliminated.
- Very costly
Transformers with
different couplings
2 Limits h3 and multiples.
h5 h7
h9
D
yn
Normal or replacement
sources
D
d
y
D
Y
y
y
3
4
p1 = p2
p1 = p2
2
3 and 4 attenuate h5 and
h7 (6-pulse bridge)
L
F
5
Tuned
filters
6
Anti-harm.
reactors
&
series filters
5 Attenuates harmonics
at the tuning frequency.
6 Decreases THD(i).
Schneider Electric
12
II. Passive filter: architecture & design
● 3-phase + neutral filter
● Composed of only two elements
● 1 serial three-phase inductance
● 1 parallel three-phase inductance
Ph
No capacitors
Lo
Mains
No power electronics
Zo
No batteries
No micro controllers
N
Filter
Unmatched reliability, same as that of a dry transformer
Schneider Electric
13
II. Cleanwave: solution for neutral currents
● At A Glance:
● Zero sequence harmonic filter
● Reduces neutral currents in
commercial & industrial buildings
● Balancing of 3-phase currents
● 12-280 kVA (expandable)
● 3-phase low voltage applications
input
output
● Customer benefits
Schneider Electric
● Simple and highly reliable design
● Reduction of neutral currents by 10:1
● Compliance with harmonic standards
connection
● Operational savings
● Easy integration into power
distribution cabinets (Chassis Format)
● Easy sizing and installer friendly
14
II. Sizing cleanwave
● CleanWave is designed for the most demanding situations
● H3 harmonics and multiple: THDI up to 80%
● Neutral current = 1.8 times phase current
● Very easy sizing
Schneider Electric
Max power or max. Iphase
Selection of the filter of
immediately higher
power or current
Selection of the
30 kVA CleanWave
15
Balanced
Without Ph3
Without Ph2 & 3
I1: 150A
I1: 126A
I1: 112A
I1: 126A I1: 107A
I1: 154A
I2: 149A
I2: 126A
I2: 122A
I2: 126A I2: 46A
I2: 0A
I3: 151A
I3: 127A
I3: 65A
I3: 0A
I3: 0A
In: 21A
In: 242A In: 25A
I3: 46A
In: 201A In: 25A
In: 150A
Input:
Input:
Input:
In = 21 A
In = 25 A
In = 25 A
Output:
Output:
Output:
In = 242 A
In = 201 A
In = 150 A
I1 in
In in
I1 out
In out
Schneider Electric
1mv=1 A
I1 in
In in
I1 out
In out
1mv=1 A
I1 in
1mv=1 A
In in
I1 out
In out
16
II. Active harmonic conditioner: architecture &
design
I source
Power
source
Non-linear
I conditioner
Active
harmonic
conditioner
● The active harmonic conditioner generates the harmonic currents
required by non-linear loads. These currents are opposite in phase with
respect to the current supplied by the source.
● The A.H.C is sized only for harmonic currents
● The current consumed by the load is therefore:
I load = I source + I conditioner
Schneider Electric
17
II. Reducing upstream harmonic pollution
2
2
2
1,5
1,5
1,5
1
1
1
+
0,5
0
-0,5
-1
=
0,5
0
-0,5
-1
0
-0,5
-1
-1,5
-1,5
-2
-2
-2
I. sinusoidal
I. conditioner
The
harmonics are
eliminated
upstream and
apparent
power is
reduced
3
4
Schneider Electric
0,5
Active
conditioner
supplies the
required
harmonics to
1
2
CTs analyze the
harmonics
required by the
Equipment is the
source of
harmonics
18
II. Sinewave standard solution: 20-480A of
harmonic compensation
● SineWave includes everything for a simple and functional basic solution:
- EMC filter to comply with EN55011 level A and IEC 1000-4
- 7-language user interface
- Basic indications by 3 LEDs
- Relay contacts for remote indications
- Terminal blocks for power and sensor connections
- Wide choice of current transformers: split or closed
Schneider Electric
19
II. Sinewave features
● Input
•
•
Voltage
Phases
•
Frequency
: 400 V , - 20% , + 15%
: 3-phase with or without neutral. Compatible
Operation with single phase and unbalanced load
: 50 Hz or 60 Hz, +/- 8% auto-sensing
● Compensation characteristics
Schneider Electric
•
•
•
•
•
•
Harmonics covered
Type of compensation
Compensation mode
Attenuation ratio
Cos phi correction
THDU reduction
•
•
Response time
: H 2 to H 25
: Harmonics - cos phi - mixed (Hn + cos)
: Overall or selective (specific harmonics)
: >10 at full load ( THDI)
: Up to 1
: According to the installation parameters, THDU
reduction will be determinated by the SITE AUDIT
: < 40 ms in overall current compensation mode
: Automatic current limitation
20
II. Example: Variable Speed Drive load
2
2
1,5
1,5
1
1
0.5
0.5
0
0
-0.5
-0.5
-1
-1
-1,5
-1,5
-2
-2
Mains current without
active conditioner
I phase
THDI
I neutral
S
Power factor
Cos phi 1
Schneider Electric
= 48 A
= 81%
= 42 A
= 10.6 kVA
= 0.77
= 0.99
Mains current with
active conditioner
I phase
THDI (reduced by a factor of 24)
I neutral
S
Power factor
Cos phi 1
= 38A (-21%)
= 3.4%
= 2.6 A
= 8.4 kVA
=1
=1
21
II. Example: Variable Speed Drive load
Harmonic current without SineWave
THDI = 92.6%
PF = 0.73
H21
H19
H17
H15
H13
H11
H9
H7
0
H5
0
H1
20
H21
20
H19
40
H17
40
H15
60
H13
60
H11
80
H9
80
H7
100
H5
100
H3
120
H1
120
H3
Test Results of a 60 A Active Conditioner
Harmonic current with SineWave
2.9%
1.0
Reduction of 27% in the line RMS current
Schneider Electric
22
II. Accusine solution
● Robust design suitable for heavy industrial
applications
● IP54 protection enclosure is standard
● Full EMC compliance with 89/336EEC,
conforms to IEC/EN 60439-1, EN61000-6-4
class A, EN61000-6-2 standards
● Current output ratings of 50 A, 100 A or 300
A
● Can be paralleled up to 10 units in any rating
combination
● Ultra fast response time (1/2 cycle)
● Cancel harmonic up to 50th order
● ABS Certified for Marine applications
Schneider Electric
23
II. Accusine features
● Input
• Voltage
: 208-480V, - 10% , + 10%; auto sensing
• Phases
: 3-phase, 3-wire with or without neutral.
Compatible
Operation with single phase
• Frequency
: 50 Hz or 60 Hz, +/- 5% auto-sensing
● Compensation characteristics
Schneider Electric
• Harmonics covered : H 2 to H 50 (no filtering on neutral conductor)
• Type of compensation
: Harmonics - cos phi - mixed (Hn +
cos)
• Compensation mode : overall
• Attenuation ratio
: 10:1 overall
• Cos phi correction
: Up to unity; can also inject lagging
VARS
• THDU reduction
: Guaranteed compliance with
IEEE519; UK G5/4 or
IEC 61000-2-3
• Response time
: < 10 ms
: Automatic current limitation
24
II. Customer benefits / active power solutions
● Safe and reliable AC electrical distribution systems
● Nuisance tripping of protection circuit breakers avoided
● Improved power quality
● Reduction of the THD(V)
● Cancellation of the voltage potential on the neutral conductor
● Increased lifetime of AC distribution system equipment
● Over-sizing cables, transformers and other AC distribution equipment
avoided
● Compliance of installations with harmonic standards ensured
● Improved power factor
● Lower energy expenses/bills
Schneider Electric
25
I. Introduction
II. Harmonic mitigation solution
III. Case study
lV.Conclusion
Schneider Electric
26
III. Accusine application case study
● Oil platform in the North Sea with
turbine / diesel generators feeding 6 KV
network
● Mechanical resonance on the platform
when pump VFDs operated above 49 Hz
● Each 1 Hz increment in pump speed
equals \$6k/day incremental revenue per
pump (2003 prices)
● 2 x 600 KW VFDs at 380V
● 300A AHF for each VFD
● Operating in harmonic + power factor
correction mode
● Increased pump speed by 1 Hz
Schneider Electric
27
III. Accusine application case study
Voltage waveform - AHF OFF
● THD(V) reduced from
12.6% to 6.0%
● Note high voltage
notching & distortion on
generator fed network
Voltage waveform - AHF ON
● THD(I) reduced from
31.8% to 7.2%
● PF from 80.3% to
95.2%
Current waveform - AHF OFF
Current waveform - AHF ON
Schneider Electric
28
I. Introduction
II. Harmonic mitigation solution
III. Case study
lV.Conclusion
Schneider Electric
29
lV. Conclusion
● Power quality issues are well worth some consideration,
● Even more so for Oil & Gas processes where the availability and quality
of Power is quite critical,
● Correct identification of the root causes of the problem is essential to
choosing and implementing the best solution right from the start => Talk
to the experts.
Schneider Electric
30
The 3 main messages
● Schneider Electric is your Power Quality expert
● We offer a variety of solutions and products to help identify and correct
power quality problems
● Investing in power quality will improve both your operations and profits
Schneider Electric
31
```
Document related concepts

Electrification wikipedia, lookup

Mains electricity wikipedia, lookup

Electric machine wikipedia, lookup

History of electric power transmission wikipedia, lookup

Power engineering wikipedia, lookup

Buck converter wikipedia, lookup

Switched-mode power supply wikipedia, lookup

Opto-isolator wikipedia, lookup

Alternating current wikipedia, lookup

Voltage optimisation wikipedia, lookup

Resistive opto-isolator wikipedia, lookup

Rectifier wikipedia, lookup

Stray voltage wikipedia, lookup

Current source wikipedia, lookup

Pulse-width modulation wikipedia, lookup

Variable-frequency drive wikipedia, lookup

Ohm's law wikipedia, lookup

Islanding wikipedia, lookup

Power inverter wikipedia, lookup

Electrical substation wikipedia, lookup

Three-phase electric power wikipedia, lookup

Mercury-arc valve wikipedia, lookup

Earthing system wikipedia, lookup

Electric power system wikipedia, lookup

Tube sound wikipedia, lookup

Audio power wikipedia, lookup

Amtrak's 25 Hz traction power system wikipedia, lookup

Power factor wikipedia, lookup

Wireless power transfer wikipedia, lookup

History of electromagnetic theory wikipedia, lookup

War of the currents wikipedia, lookup

General Electric wikipedia, lookup

Electric motorsport wikipedia, lookup

Similar