Download presentation ()

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Extrasolar
planets
and
Kepler’s
Third Law
2
4

T2 
a3
G  M  m
AF. May 2015
Nicolaus Copernicus
1473-1543
Tycho Brahe
1546-1601
Johannes
Kepler
1571-1630
Nose lost in 1566 following a
sword duel with third cousin
Manderup Parsberg over the
legitimacy of a mathematical
formula!
Isaac
Newton
16421727
r
a 1   2 
1   cos 
Polar
equation
of ellipse
2
b Eccentricity of
  1  2 ellipse
a
2
4

P2 
a 3 Orbital
period P
G(M  M )
Johannes Kepler
1571-1630
dA 1
 2 G(M  M ) 1   2  a
dt
Equal areas swept out in
equal times
This is a constant
Radii of planets not to scale!
Kepler’s
Third Law
Pa
Orbital period P /years
Johannes Kepler
1571-1630
P  a 


Yr  AU 
Mercury,
Venus,
Earth,
Mars
Saturn
Jupiter
Neptune
3
2
3
2
Uranus
2
4

P2 
G M  M

a3
Semi-major axis of orbit a / AU
Isaac Newton
(1642-1727) developed
a mathematical model of
Gravity which predicted the
elliptical orbits proposed by
Kepler
Planet and Solar
masses
Force of
gravity
r
GMM
F
r2
G  6.67  1011 m3 kg -1s-2
a 1  
2

1   cos 
Semi-major
axis
2a
M
Polar
equation
of ellipse
b 2 Eccentricity of
  1  2 ellipse
a
2
4

P2 
a3
G(M  M )
Semiminor
axis
2b
Orbital
period P
M
r

F
GMM
r2
Kepler’s Third Law
T
 a 
f ( M , m)  k  

days
AU


M  1.99  1030 kg
G  6.67  1011 Nm 2 kg -2
k
AU  1.49597871  10 m
11
24  3600s  1day
2  AU
3600  24 GM
f ( M , m) 
4
T 
a3
G  M  m
2
2
T
2
 a 
 3600  24 
 AU 

days
 AU 
G  M  m
T
2  AU


days 3600  24 GM
m planet mass
3
2
 a 


M
m  AU 

M
M
1
M
m

M
M
M star mass
3
2
3
2
 365
3
2
3
2
T
2
 a 

 AU 

days 3600  24 G  M  m 
 AU 
3
2
3
2
T orbital period
3
2
a orbital 'radius'
semi-major axis of
elliptical orbit
T
 a 
f ( M , m)  k  

days
 AU 
k
2  AU
3
2
3600  24 GM
f ( M , m) 
3
2
 365
M
m

M
M
Vertical intercept is very
close to ln(365) = 5.90
Gradient is 1.49, not far
off the Kepler #3
prediction of 3/2
 T 

 a 
3
ln  
f
(
M
,
m
)

ln
k

ln


2


days
AU






k
2  AU
3
2
3600  24 GM
f ( M , m) 
 365
M
m

M
M
f ( M , m) 
M
m

M
M
m jupiter  1.898  1027 kg
m jupiter
1

M
1047.9
M star mass
m planet mass
f ( M , m) 
M star mass
m planet mass
M
m

M
M
m jupiter  1.898  1027 kg
m jupiter 
1
M
1047.9
M
m

M
M
M star mass
f ( M , m) 
m planet mass
m jupiter  1.898  1027 kg
m jupiter 
1
m 
m jupiter
317.85
m
 0.0031
m jupiter
1
M
1047.9
M
m

M
M
M star mass
f ( M , m) 
m planet mass
m jupiter  1.898  1027 kg
m jupiter 
1
m 
m jupiter
317.85
m
 0.0031
m jupiter
1
M
1047.9
Earth-like candidates?
Related documents