Download Photosynthesis I

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Cyanobacteria wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Transcript
Photosynthesis:
Life from Light and Air
AP Biology
2007-2008
Photosynthesis
 Light reactions
light-dependent reactions
 energy conversion reactions

 convert solar energy to chemical energy
 ATP & NADPH
 Calvin cycle
It’s not the
Dark Reactions!
light-independent reactions
 sugar building reactions

 uses chemical energy (ATP & NADPH) to
reduce CO2 & synthesize C6H12O6
AP Biology
thylakoid
chloroplast
+H+ H+ H+
+ + +
H+ H+H
+H+ H H H
H
Light reactions
 Electron Transport Chain
 like in cellular respiration
proteins in organelle membrane
 electron acceptors

 NADPH

proton (H+)
gradient across
inner membrane
 find the double membrane!

ATP synthase
enzyme
AP Biology
ATP
+H+ H+ H+
H+ H+H
+ + + +
H+H H H H
ETC of Respiration
Mitochondria transfer chemical energy from food molecules
into chemical energy of ATP

use electron carrier NADH
generates H2O
AP Biology
ETC of Photosynthesis
Chloroplasts transform light energy
into chemical energy of ATP

generates O2
AP Biology
use electron carrier NADPH
The ATP that “Jack” built
photosynthesis
sunlight
respiration
breakdown of C6H12O6
H+
H+
 moves the electrons
H+
H+
H+
H+
H+
H+
 runs the pump
 pumps the protons
 builds the gradient
 drives the flow of protons
ADP + Pi
through ATP synthase
 bonds Pi to ADP
ATP
 generates the ATP
AP Biology
… that evolution built
H+
Pigments of photosynthesis
How does this
molecular structure
fit its function?
 Chlorophylls & other pigments


embedded in thylakoid membrane
arranged in a “photosystem”
 collection of molecules
AP Biology

structure-function relationship
Photosystems of photosynthesis
 2 photosystems in thylakoid membrane
collections of chlorophyll molecules
 act as light-gathering molecules
 Photosystem II
reaction

 chlorophyll a
center
 P680 = absorbs 680nm
wavelength red light

Photosystem I
 chlorophyll b
 P700 = absorbs 700nm
wavelength red light
AP Biology
antenna
pigments
chlorophyll a
ETC of Photosynthesis
Photosystem II
chlorophyll b
Photosystem I
AP Biology
ETC of Photosynthesis
sun
1
e
e
AP Biology
Photosystem II
P680
chlorophyll a
Inhale, baby!
ETC of Photosynthesis
thylakoid
chloroplast
+H+ H+ H+
+ + +
H+ H+H
+H+ H H H
H
H+
ATP
+H+ H+ H+
+
H
H + + H+H+ H+
HH
Plants SPLIT water!
H H
1
O
H
e-
e e
fill the e– vacancy
AP Biology
Photosystem II
P680
chlorophyll a
H+
e-
+H
OO
e
e
H
2
ETC of Photosynthesis
thylakoid
chloroplast
H+
+H+ H+ H+
+
H
H + + H+H+ H+
HH
+H+ H+ H+
H+ H+H
+ + + +
H+H H H H
ATP
3
2
1
e
e
H+
4
ATP
H+
to Calvin Cycle
H+
H+
H+
AP Biology
Photosystem II
P680
chlorophyll a
H+
H+
+
H+ H
ADP + Pi
ATP
H+
H+
energy to build
carbohydrates
ETC of Photosynthesis
e
e
5
e e
AP Biology
Photosystem II
P680
chlorophyll a
Photosystem I
P700
chlorophyll b
sun
ETC of Photosynthesis
electron carrier
6
e
e
5
sun
AP Biology
Photosystem II
P680
chlorophyll a
Photosystem I
P700
chlorophyll b
$$ in the bank…
reducing power!
ETC of Photosynthesis
sun
sun
+
+
+ H
H
+
+
H+ H +
H H
H+H+ H+ H
+
H
to Calvin Cycle
O
split H2O
ATP
AP Biology
ETC of Photosynthesis
 ETC uses light energy to produce

ATP & NADPH
 go to Calvin cycle
 PS II absorbs light



AP Biology
excited electron passes from chlorophyll to
“primary electron acceptor”
need to replace electron in chlorophyll
enzyme extracts electrons from H2O &
supplies them to chlorophyll
 splits H2O
 O combines with another O to form O2
 O2 released to atmosphere
 and we breathe easier!
Experimental evidence
 Where did the O2 come from?

radioactive tracer = O18
Experiment 1
6CO2 + 6H2O + light  C6H12O6 + 6O2
energy
Experiment 2
6CO2 + 6H2O + light  C6H12O6 + 6O2
energy
Proved O2 came from H2O not CO2 = plants split H2O!
AP Biology
Noncyclic Photophosphorylation
 Light reactions elevate
electrons in
2 steps (PS II & PS I)

PS II generates
energy as ATP

PS I generates
reducing power as NADPH
ATP
AP Biology
Cyclic photophosphorylation
 If PS I can’t pass electron
to NADP…it cycles back
to PS II & makes more
ATP, but no NADPH
coordinates light
reactions to Calvin cycle
 Calvin cycle uses more
ATP than NADPH


18 ATP +
NADPH
AP12
Biology
 1 C6H12O6
ATP
Photophosphorylation
cyclic
photophosphorylation
NADP
NONcyclic
photophosphorylation
ATP
AP Biology
Photosynthesis summary
Where did the energy come from? Sun
Where did the electrons come from? Chlorophyll
Where did the H2O come from?
Roots
Where did the O2 come from?
Water splitting
Out the stomata
Where did the O2 go?
Where did the H+ come from?
Water Splitting
Where did the ATP come from?
PS 2 (H gradient)
What will the ATP be used for?
Building sugar
Where did the NADPH come from? Reduction of
NADP (PS1)
What will the NADPH be used for?
Calvin Cycle
AP Biology
…stay tuned for the Calvin cycle
You can grow if you
Ask Questions!
AP Biology
2007-2008