Download 2nd Semester Final Study Guide-Clayton Answer

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Newton's theorem of revolving orbits wikipedia , lookup

Force wikipedia , lookup

Photon polarization wikipedia , lookup

Vibration wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Jerk (physics) wikipedia , lookup

Kinematics wikipedia , lookup

Faster-than-light wikipedia , lookup

Classical mechanics wikipedia , lookup

Inertia wikipedia , lookup

Equations of motion wikipedia , lookup

Centripetal force wikipedia , lookup

Wave wikipedia , lookup

Wave packet wikipedia , lookup

Classical central-force problem wikipedia , lookup

Hunting oscillation wikipedia , lookup

Work (physics) wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Surface wave inversion wikipedia , lookup

Wavelength wikipedia , lookup

Matter wave wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Transcript
2nd Semester Final Study Guide-Clayton
Multiple Choice
Identify the choice that best completes the statement or answers the question.
____
1. If you ride your bicycle down a straight road for 500 m then turn around and ride back, your distance is ____
your displacement.
a. greater than
c. less than
b. equal to
d. can’t determine
____
2. Motion is a change in ____.
a. time
b. speed
c. velocity
d. position
3. 3 m/s north is an example of a(n) ____.
a. speed
b. velocity
c. position
d. acceleration
____
____
4. The relationship among speed, distance, and time is ____.
a. t = s/d
c. s = dt
b. d = t/s
d. s = d/t
____
5. A single point on a distance-time graph tells the ____.
a. instantaneous speed
c. constant speed
b. average speed
d. average velocity
____
6. If you ride your bike up a hill, then ride down the other side, your acceleration is ____.
a. all positive
c. first positive, then negative
b. all negative
d. first negative, then positive
____
7. A horizontal line on a velocity/time graph shows ____ acceleration.
a. positive
c. changing
b. negative
d. zero
____
8. Newton's first law of motion is also called the law of ____.
a. mass
c. force
b. inertia
d. constant velocity
____
9. The relationship among mass, force, and acceleration is explained by ____.
a. conservation of momentum
c. Newton's second law of motion
b. Newton's first law of motion
d. Newton's third law of motion
____ 10. The acceleration due to gravity is ____.
a. 98 m/s2
b. 9.8 m/s2
c. 9.8 m/s
d. 0.98 m/s
____ 11. According to Newton's second law of motion, ____.
a. F = m a
c. F = p a
b. F = m v
d. F = p v
____ 12. When a force is exerted on a box, an equal and opposite force is exerted by the box. These forces are called
____ forces.
a. action-reaction
c. frictional
b. centripetal
d. gravitational
____ 13. The statement "to every action there is an equal and opposite reaction" is ____.
a. the law of conservation of momentum
b. Newton's first law of motion
c. Newton's second law of motion
d. Newton's third law of motion
____ 14. A 300-N force acts on a 25-kg object. The acceleration of the object is ____.
a. 7,500 m/s2
c. 25 m/s2
2
b. 300 m/s
d. 12 m/s2
____ 15. Increasing the speed of an object ____ its potential energy.
a. does not affect
c. decreases
b. increases
d. changes
____ 16. The SI unit for energy is the ____.
a. calorie
b. joule
c. meter per second
d. kilogram
____ 17. You can calculate kinetic energy by using the equation ____.
a. KE (J) = m (kg)  9.8 m/s2  h (m)
c. KE (J) = 1/2 m (kg)  v2 (m2/s2)
b. KE (J) = w (m)  h (m)
d. KE (J) = 9.8 m/s2  1/2 m (kg)
____ 18. You can calculate gravitational potential energy by using the equation ____.
a. GPE (J) = 1/2m (kg)  1/2h (m)
c. GPE (J) = h (m)  9.8 m/s2
2
b. GPE (J) = m (kg)  9.8 m/s  h (m)
d. GPE (J) = 1/2h (m)  w (m)
____ 19. A wave will travel only as long as it has ____ to carry.
a. energy
c. amplitude
b. mass
d. matter
____ 20. When you squeeze together the coils of a spring and then release them, you are creating a ____ wave.
a. transverse
c. water
b. compressional
d. seismic
____ 21. Water waves are ____.
a. transverse waves
b. compressional waves
c. seismic waves
d. both a and b
____ 22. You are creating a wave on a spring. If you start shaking the spring more slowly, the wavelength of the
resulting wave will ____.
a. increase
c. remain the same
b. decrease
d. depend on the amplitude
____ 23. Wave A carries more energy than wave B. Wave B has a smaller ____ than wave A.
a. frequency
c. amplitude
b. wavelength
d. speed
____ 24. The energy a wave carries is measured by its ____.
a. wavelength
c. amplitude
b. frequency
d. speed
____ 25. For a given wave, if the frequency doubles, the wavelength ____.
a. doubles
b. stays the same
c. is halved
d. quadruples
____ 26. When the crest of one wave passes through the trough of another wave, ____ takes place.
a. resonance
c. constructive interference
b. diffraction
d. destructive interference
____ 27. Sound travels in a ____ wave.
a. transverse
b. compressional
c. surface
d. inverted
____ 28. The unit used to measure frequency is the ____.
a. newton
c. decibel
b. joule
d. hertz
____ 29. For the Doppler effect to occur, ____.
a. the sound source must be moving
b. the listener must be moving
c. both source and listener must be moving
d. either source or listener must be moving
____ 30. The differences among sounds of the same pitch and loudness is described as the ____ of the sound.
a. quality
c. fundamental frequency
b. pitch
d. resonance
____ 31. Electromagnetic waves ____.
a. are compressional waves
b. are transverse waves
c. must have a medium
d. are generated by static electricity
____ 32. ____ are used for medical imaging.
a. Ultraviolet waves
b. Infrared waves
c. X rays
d. Gamma rays
Completion
Complete each statement.
33. ____________________ is a measure of how far an object has moved.
34. An object changing its speed from 10 m/s to 3 m/s is undergoing ____________________ acceleration.
35. If the forces acting on an object at rest are ____________________, the object will remain at rest.
36. In the equation a = (Vf – Vi)/t, Vf stands for _________________________.
37. If an object has energy, this means that the object has the ability to cause ____________________.
38. When you shake the end of a rope up and down, you create a ____________________ wave.
39. The symbol  (lambda) stands for the ____________________.
40. Sound is caused by ____________________.
41. As the amplitude of a sound increases, the loudness ____________________.
42. ____________________ is a measure of how many wavelengths pass a certain point each second
Short Answer
43. A car is driving down a road. Is it possible for its position to be changing and its acceleration to be zero? Is it
possible for its velocity to be changing and its acceleration to be zero?
44. Explain the action-reaction forces of a rocket in space.
Figure 11-1
45. In Figure 11-1, identify the following structures:
______ wavelength
______ crest
______ amplitude
46. You shake the end of a rope to make a wave. You start shaking the rope a greater distance but at the same
speed. How are the wavelength, frequency, amplitude, and speed affected?
47. Describe how a radio wave reaches your ear.
Problem
48. A high speed train travels with an average speed of 227 km/h. The train travels for 2 h. How far does the train
travel?
49. Find the acceleration of a car that goes from 32 m/s to 96 m/s in 8.0 s.
50. Calculate the force on an object that has a mass of 12 kg and an acceleration of 4 m/s2.
51. A 20-kg bicycle carrying a 50-kg girl is traveling at a speed of 8 m/s. What is the kinetic energy of the girl
and bicycle?
52. A 70-kg boy is sitting 3 m from the ground in a tree. What is his gravitational potential energy?
53. An ocean wave has a frequency of 2.0 Hz with a wavelength of 10 m. What is the velocity of the wave?
True/False
Indicate whether the statement is true or false.
____ 54. Balanced forces acting on an object cause the object to accelerate.
____ 55. Gravity causes all falling objects to accelerate at a rate of 98 m/s2.
____ 56. Energy doesn't have to involve motion.
____ 57. Energy is the ability to cause change.
____ 58. When you ride a playground swing, your potential energy is greatest at the highest point.
____ 59. Lowering an object decreases its potential energy.
____ 60. The sum of potential and kinetic energy in a system is called the total energy.
2nd Semester Final Study Guide-Clayton
Answer Section
MULTIPLE CHOICE
1. ANS:
NAT:
2. ANS:
NAT:
3. ANS:
NAT:
4. ANS:
NAT:
5. ANS:
NAT:
6. ANS:
NAT:
7. ANS:
NAT:
8. ANS:
NAT:
9. ANS:
NAT:
10. ANS:
NAT:
11. ANS:
NAT:
12. ANS:
NAT:
13. ANS:
NAT:
14. ANS:
NAT:
15. ANS:
NAT:
16. ANS:
NAT:
17. ANS:
NAT:
18. ANS:
NAT:
19. ANS:
NAT:
20. ANS:
NAT:
21. ANS:
NAT:
A
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
B
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
A
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
B
PTS: 1
B2(5-8) | B4(9-12)
C
PTS: 1
B2(5-8) | B4(9-12)
B
PTS: 1
B2(5-8) | B4(9-12)
A
PTS: 1
B2(5-8) | B4(9-12)
A
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
D
PTS: 1
B2(5-8) | B4(9-12)
A
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
B
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
C
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
B
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
A
PTS: 1
B3(5-8) | B6(9-12)
B
PTS: 1
B3(5-8) | B6(9-12)
D
PTS: 1
B3(5-8) | B6(9-12)
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
B
OBJ: 1/1
PS-M-B1
B
OBJ: 1/1
PS-M-B1
B
OBJ: 2/1
SI-M-A3 | SI-M-A7 | PS-M-B1
B
OBJ: 2/1
SI-M-A3 | SI-M-A7 | PS-M-B1
B
OBJ: 3/1
SI-M-A3 | SI-M-A4 | PS-M-B1
B
OBJ: 5/2
SI-M-A4 | SI-M-A7 | PS-M-B1
B
OBJ: 6/3
SI-M-A7 | PS-M-B1 | PS-M-B5
B
OBJ: 8/3
SI-M-A7 | PS-M-B1 | PS-M-B3
B
OBJ: 1/1
SI-M-A4 | SI-M-A7 | PS-M-B3
B
OBJ: 4/2
SI-M-A7 | PS-M-B2
B
OBJ: 4/1
SI-M-A7 | PS-M-B2
B
OBJ: 8/3
SI-M-A5 | PS-M-B4 | PS-M-B5
B
OBJ: 8/3
SI-M-A5 | PS-M-B4 | PS-M-B5
A
OBJ: 1/1
SI-M-A4 | SI-M-A7 | PS-M-B3
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
SI-M-A1 | PS-M-C1
B
OBJ: 3/1
SI-M-A5
B
OBJ: 3/1
SI-M-A5
22. ANS:
NAT:
23. ANS:
NAT:
24. ANS:
NAT:
25. ANS:
NAT:
26. ANS:
NAT:
27. ANS:
NAT:
28. ANS:
NAT:
29. ANS:
NAT:
30. ANS:
NAT:
31. ANS:
NAT:
32. ANS:
NAT:
A
PTS:
B3(5-8) | B6(9-12)
C
PTS:
B3(5-8) | B6(9-12)
C
PTS:
B3(5-8) | B6(9-12)
C
PTS:
B3(5-8) | B6(9-12)
D
PTS:
B3(5-8) | B6(9-12)
B
PTS:
B3(5-8) | B6(9-12)
D
PTS:
B3(5-8) | B6(9-12)
D
PTS:
B3(5-8) | B6(9-12)
A
PTS:
B3(5-8) | B6(9-12)
B
PTS:
B3(5-8) | B6(9-12)
C
PTS:
B3(5-8) | B6(9-12)
1
1
1
1
1
1
1
1
1
1
1
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
B
OBJ: 5/2
SI-M-A3 | SI-M-A7 | SI-M-B4
B
OBJ: 6/2
SI-M-A3 | SI-M-A7 | SI-M-B4
B
OBJ: 6/2
SI-M-A3 | SI-M-A7 | SI-M-B4
A
OBJ: 5/2
SI-M-A3 | SI-M-A7 | SI-M-B4
B
OBJ: 9/3
SI-M-A7
B
OBJ: 1/1
SI-M-A4 | SI-M-A7
B
OBJ: 6/2
SI-M-A3 | SI-M-A4 | SI-M-A7
B
OBJ: 7/2
SI-M-A4 | SI-M-A7
B
OBJ: 9/3
SI-M-A3 | SI-M-A7
B
OBJ: 2/1
SI-M-A3 | SI-M-A4 | SI-M-A7
B
OBJ: 4/2
SI-M-A3 | SI-M-A4 | SI-M-B4
COMPLETION
33. ANS: Distance
PTS: 1
STA: PS-M-B1
34. ANS: negative
OBJ: 1/1
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: B
STA: SI-M-A7 | PS-M-B1 | PS-M-B5
35. ANS: balanced
OBJ: 6/2
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: B
STA: SI-M-A7 | PS-M-B1 | PS-M-B3
36. ANS: final velocity
OBJ: 8/3
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: B
STA: SI-M-A3 | SI-M-A7 | PS-M-B1
37. ANS: change
OBJ: 2/1
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: B
STA: PS-M-C1 | PS-M-C2
38. ANS: transverse
OBJ: 1/1
NAT: B3(5-8) | B5(9-12) | B6(9-12)
OBJ: 3/1
NAT: B3(5-8) | B6(9-12)
PTS: 1
STA: SI-M-A5
DIF: B
DIF: B
39. ANS: wavelength
PTS: 1
DIF: B
STA: SI-M-A3 | SI-M-A7 | SI-M-B4
40. ANS: vibration
OBJ: 5/2
NAT: B3(5-8) | B6(9-12)
PTS: 1
DIF: B
STA: SI-M-A4 | SI-M-A7
41. ANS: increases
OBJ: 1/1
NAT: B3(5-8) | B6(9-12)
PTS: 1
DIF: B
STA: SI-M-A3 | SI-M-A4 | SI-M-A5
42. ANS: Frequency
OBJ: 4/2
NAT: B3(5-8) | B6(9-12)
PTS: 1
DIF: B
STA: SI-M-A3 | SI-M-A4 | SI-M-A7
OBJ: 6/2
NAT: B3(5-8) | B6(9-12)
SHORT ANSWER
43. ANS:
Yes, it could have constant speed. No, a change in velocity is always an acceleration.
PTS: 1
DIF: A
OBJ: 4/2
NAT: B2(5-8) | B4(9-12)
STA: SI-M-A3 | SI-M-A4 | PS-M-B5
44. ANS:
hot gases are the action force, accelerating rocket is the reaction force
PTS: 1
DIF: A
STA: SI-M-A5 | PS-M-B4 | PS-M-B5
45. ANS:
B, A, C
OBJ: 8/3
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: B
OBJ: 4/2
NAT: B3(5-8) | B6(9-12)
STA: SI-M-A4 | SI-M-A5
46. ANS:
wavelength, frequency, and speed remain the same; amplitude increases
PTS: 1
DIF: A
OBJ: 5/2 | 6/2
NAT: B3(5-8) | B6(9-12)
STA: SI-M-A3 | SI-M-A7 | SI-M-B4
47. ANS:
The radio wave causes the electrons in your radio antenna to vibrate, providing a signal containing
information. An amplifier boosts the signal and sends it to speakers that vibrate, causing a compressional
wave that reaches your ear as sound.
PTS: 1
DIF: A
STA: SI-M-A4 | SI-M-A7
PROBLEM
OBJ: 5/3
NAT: B3(5-8) | B6(9-12)
48. ANS:
d = s  y = 227 km/h  (2.00 h) = 454 km
PTS: 1
DIF: A
OBJ: 2/1
STA: SI-M-A3 | SI-M-A7 | PS-M-B1
49. ANS:
vf – vi/t = (96 m/s – 32 m/s)/ 8.0 s = 8.0 m/s2
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: A
OBJ: 6/2
STA: SI-M-A7 | PS-M-B1 | PS-M-B5
50. ANS:
48 N
F = ma = 12 kg  4 m/s2 = 48 kg  m/s2 = 48 N
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: A
STA: SI-M-A4 | SI-M-A7 | PS-M-B3
51. ANS:
1/2 mv2 = 1/2 (20 + 50)(8)2 = 2,290 J
OBJ: 1/1
NAT: B2(5-8) | B4(9-12)
PTS: 1
DIF: A
STA: PS-M-C1 | PS-M-C2
52. ANS:
(m)(9.8)(h) = (70)(9.8)(3) = 2,058 J
OBJ: 1/1
NAT: B3(5-8) | B5(9-12) | B6(9-12)
PTS: 1
DIF: A
STA: PS-M-C1 | PS-M-C2
53. ANS:
v = f = 2.0 Hz  10 m = 20 m/s
OBJ: 1/1
NAT: B3(5-8) | B5(9-12) | B6(9-12)
OBJ: 7/2
NAT: B3(5-8) | B6(9-12)
PTS: 1
STA: SI-M-A3
DIF: A
TRUE/FALSE
54. ANS:
NAT:
55. ANS:
NAT:
56. ANS:
NAT:
57. ANS:
NAT:
58. ANS:
NAT:
59. ANS:
NAT:
60. ANS:
NAT:
F
PTS: 1
B2(5-8) | B4(9-12)
F
PTS: 1
B2(5-8) | B4(9-12)
T
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
T
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
T
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
T
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
F
PTS: 1
B3(5-8) | B5(9-12) | B6(9-12)
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
DIF:
STA:
B
OBJ: 1/1
SI-M-A4 | SI-M-A7 | PS-M-B3
B
OBJ: 3/1
SI-M-A1 | SI-M-A3 | PS-M-B2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 3/2
SI-M-A4 | SI-M-A7 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2
B
OBJ: 1/1
PS-M-C1 | PS-M-C2