Download Evaluation of Cardiac Function

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Coronary artery disease wikipedia , lookup

Cardiac contractility modulation wikipedia , lookup

Management of acute coronary syndrome wikipedia , lookup

Electrocardiography wikipedia , lookup

Cardiac surgery wikipedia , lookup

Myocardial infarction wikipedia , lookup

Quantium Medical Cardiac Output wikipedia , lookup

Transcript
Evaluation of Cardiac Function
Technical Foundations: How is it done?
Orlando P. Simonetti, Ph.D.
The Ohio State University
The basic technique for ECG-triggered cine imaging of the heart was first described over 20 years ago
[1]. The original prospectively-triggered spoiled gradient echo (GRE) technique, which required several
minutes to acquire a single slice and was prone to respiratory motion artifact, has evolved significantly
over the years. Segmented k-space cine acquisition, first described by Atkinson and Edelman in 1991 [2],
provided a means to trade temporal resolution for scan time by collecting several k-space lines for each
cine frame in each cardiac cycle; this enabled acquisition of a complete cine series within a reasonable
breath-hold. Modifications such as echo-sharing and retrospective gating [3] are commonly used to
recover some of the lost temporal resolution caused by k-space segmentation. Retrospective gating has
the added advantage of generating image frames across the entire cardiac cycle; this can be critical in the
evaluation of diastolic function and also provides a smooth, complete cine loop that facilitates qualitative
evaluation of regional myocardial wall motion.
The next major advance in cine MRI came with the replacement of GRE with the steady-state free
precession (SSFP) pulse sequence [4]. Whereas GRE is primarily T1-weighted and relies on in-flow
enhancement for its “bright-blood” signal, SSFP is inherently "bright-blood" as its signal is dependent
(approximately) on T2/T1. SSFP requires extremely short repetition times (TR) to limit its sensitivity to
field inhomogeneity and the resulting characteristic “dark-band” artifacts; therefore, while the SSFP
technique was originally described in 1986 [5], it did not become practical until the advent of fast gradient
hardware in the late 1990’s. The very short TR of SSFP also results in higher scan efficiency, and thus
shorter scan times and/or improved temporal resolution, than spoiled gradient echo. The most commonly
used method for MR cine imaging remains a segmented k-space acquisition with SSFP readout, although
GRE still enjoys some popularity at high field (3T and above) due to its low specific absorption rate
(SAR) and relative insensitivity to field inhomogeneity.
The advantages of “real-time” imaging (no ECG synchronization or breath-holding) were recognized
early on, and an echo planar (EPI) sequence for real-time cine imaging of the heart was described as far
back as 1987 [6,7]. Single-shot EPI of the heart has never proven to provide reliable image quality, but
the combination of fast SSFP readout with parallel imaging methods (i.e., SENSE or GRAPPA) has made
real-time imaging practical on most modern MRI systems. While still requiring some sacrifice of spatial
and temporal resolution relative to segmented k-space sequences, real-time imaging is feasible in
practically any patient. New methods applying alternative k-space trajectories and reconstruction
strategies are constantly improving the spatial and temporal resolution achievable with real-time imaging;
undoubtedly, real-time will ultimately replace segmented k-space as the standard cine acquisition
technique.
While conventional cine images are often utilized to quantitatively measure global cardiac function
parameters (ejection fraction, stroke volume, cardiac output, etc.), a number of variations on cine imaging
have been developed and employed to facilitate quantitative evaluation of regional cardiac function.
Myocardial tagging [8], HARP [9], DENSE [10], and phase contrast MRI are all used to quantify
myocardial motion and to derive myocardial strain and strain rate. While these techniques have not been
widely adopted for clinical imaging, they serve as important clinical and pre-clinical research tools.
This presentation will cover the basic principles of MRI cine imaging of the heart, as well as some of the
advanced techniques that are more commonly used in clinical and research applications. The basic
approaches to quantitative evaluation of global and regional cardiac function will also be described.
1.
RR Edelman, R Thompson, H Kantor, TJ Brady, M Leavitt, R Dinsmore. Cardiac function: evaluation
with fast-echo MR imaging. Radiology 1987; 162:611-615.
2. DJ Atkinson and RR Edelman Cineangiography of the heart in a single breath hold with a segmented
turboFLASH sequence. Radiology February 1991 178:357-360.
3. Feinstein JA, Epstein FH, Arai AE, Foo TK, Hartley MR, Balaban RS, Wolff SD. Using cardiac phase to
order reconstruction (CAPTOR): a method to improve diastolic images. J Magn Reson Imaging. 1997 SepOct;7(5):794-8.
4. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with
segmented true fast imaging with steady-state precession. Radiology. 2001 Jun;219(3):828-34.
5. Oppelt A, Graumann R, Barfuss H. FISP: a new fast MRI sequence. Electromedica 1986; 54:15-18.
6. RR Rzedzian and IL Pykett. Instant images of the human heart using a new, whole-body MR imaging
system. American Journal of Roentgenology 1987; 149(2): 245-250.
7. Chapman B, Turner R, Ordidge RJ, Doyle M, Cawley M, Coxon R, Glover P, Mansfield P. Real-time
movie imaging from a single cardiac cycle by NMR. Magn Reson Med. 1987;5:246–254.
8. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging—a
method for noninvasive assessment of myocardial motion. Radiology 1988;169:59–63.
9. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase
(HARP) magnetic resonance imaging. Magn Reson Med 1999;42:1048–1060.
10. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in
cardiac functional MRI. J Magn Reson. 1999 Mar;137(1):247-52.