Download ORGANIC CHEMISTRY

Document related concepts
no text concepts found
Transcript
ORGANIC CHEMISTRY
HYDROCARBONS
Aliphatic (cyclic & acyclic)
Alkanes
Aromatic
Alkenes
Alkynes
Alkanes & Cycloalkanes
- Methane (CH4),Ethane (C2H6) & Butane(C3H8).
* SP3 hybridization:
- P (dumb bell-shaped)
- S (spherical-shaped)
C + 2H2
CH4----- (δ)
1
Nomenclature
CnH2n+2
* General Formula
Number of carbon
One
Two
Three
Four
Five
Sex
Seven
Eight
Nine
Ten
Name
Methane
Ethane
Propane
Butane
Pentane
Hexane
Heptane
Octane
Nonane
Decane
Structure
CH4
C2H6
C3H8
C4H10
C5H12
C6H14
C7H16
C8H18
C9H20
C10H22
* Structural Isomerism:
1]-What is Isomer and isomerism?
–C–C–C–C–
Butane
–C–
– C – C – C–
Isobutane
2]- All alkanes > 4 carbon
e.g.
more than 1 isomers
Pentane (3 isomers)
CH3 CH2 CH2CH2CH3
CH3
CH3 CH2 CHCH3
n-Pentane
Isopentane
CH3
CH3-C -CH3
CH3
Neopentane
3]-Isomerism not for alkane only
CH3CH2-OH
CH3-O-CH3
(Ethyl alcohol)
(Methyl ether)
2
C2H6O
O
C2H5-C-H
Propionaldehyde
O
CH3-C- CH3
Acetone
C3H6O
4]-Different conformations (same structure)
CH3 CH2 CH2CH3
CH3CH2CH2
CH3
CH3
CH2 CH2
CH3
* Alkyl groups (R): (-H)
# Methane CH4
CH3 Methyl
# Ethane C2H6
C2H5 Ethyl
# Propane C3H8
(2 R)
CH3CH2CH3
- CH2CH2CH3
OR
n-Propyl
CH3CHCH3
Isopropyl
# Butane (C4H10)
Butane
n-butane
Isobutane
CH3
CH3CHCH3
CH3CH2CH2CH3
n-butyl
2 butyl
CH2CH2CH2CH3
CH3CHCH2CH3
Isobutyl
CH3
CH2CHCH3
3 butyl
CH3
CH3C CH3
3
*IUPAC System.
International Union of Pure and Applied Chemistry
Rules:
1-Longest continuous chain
CH3– CH2–CH–CH2–CH3 not CH3 – CH2 – CH – CH2 – CH3
CH2
CH2
CH2
CH2
CH3
CH3
Ethyl hexane
propyl pentane
2-Lowest number of attachment of substituent
1
2
3
CH3– CH2–CH–CH–CH3 #
4
6
4
5
CH3 – CH2 – CH – CH2 –CH3
CH2
3
CH2
5
CH2
2
CH2
6
CH3
1
CH3
3-ethyl hexane
4-ethyl hexane
3-Same alkyl substituent (di -, tri-, tetra, penta, …etc.)
CH3
5
4
3
2
1
CH3 – CH – CH2 – C – CH3
CH3
CH3
2, 2, 4-Trimethylpentane
4
4-Different alkyl substation ( alphabetical)
CH3
CH2
8
7
6
5
4
3
2
1
CH3 – CH2 – CH2 – CH – CH – C – CH2 – CH3
CH2 CH3
CH2
CH3
CH2
CH3
3,3-diethyl-4-methyl-5-n-propyloctane
5-Substitution other than alky (alphabetical)
–F, –CL, –Br, –I, –NO2, –NH2, –CN
Br
CH3–CH–CH–CH–CH3
CH3
Cl
3-bromo-2-chloro-4-methylpentane
6- Two chains with equal length
1
2
3
higher no of
substitutions
4
5
6
7
CH3 –CH – CH – CH2 – CH –CH2 – CH3
CH3 CH3 CH2 CH3
CH2
CH3
2,3,5-trimethyl-4-propylheptane(4 gp.)
5
7
6
5
4
CH3 –CH – CH – CH – CH –CH2 – CH3
CH3 CH3 3 CH2 CH3
2
CH2
1
CH3
4- butyl-2,3 –dimethylheptane (3 gp.)
7- When substitutions occurs at equal distances from both
end (least on)
CH3 –CH –CH2– CH –CH– CH3
CH3
CH3 CH3
2,3,5-trimethyl-hexane
not
2,4,5-trimethyl-hexane
Physical properties
Solubility :
*All at room temp.
*C1-C4 gas C5-C17 liquids C18 and > wax like solids
* Non polar compounds
*Like dissolves like
Boiling Points:
- BP
with M. wt
-In isomeric alkanes straight chain BP> isomers.
Melting Point:
- MP
with
M. wt
6
Preparation of alkane:1] hydrogenation of unsaturated hydrocarbon
Ni /Pd/ Pt
i) CH2 – CH2
CH3–CH3
200-300
Ni /Pd/ Pt
ii) CH3-CH2 – CH2
CH3– CH2 –CH3
200-300
iii)
H2
+
Ni /Pd/ Pt
2] Reduction of alkyl halides :
a) Hydrolysis of Grignard reagent.
Dry ether
i) CH3-CH2 Br +Mg
CH3 CH2 Mg Br(Grignard reagent)
H3O+
CH3CH3 +(Mg OH) + Br -
CH CH2 Mg Br
b) Reduction by metal & acid
Zn
i) CH3CH2CHCH3
Br
Bromobutane
CH3CH2CH2CH3 +ZnBr
+
H
n-Butane
i)Li AlH4 /ether
ii) CH3CH2CHCH3
Br
Bromobutane
CH3CH2CH2CH3
+
ii) H3O
n-Butane
7
3]From coupling with sodium (Wurtz coupling):
i) 2CH3-Br + 2Na
ii) 2CH3Cl + 2Na
dry ether
CH3CH3 + 2 NaBr
dry ether
iii) CH3CH2CH2I +2Na
CH3CH3+NaCl
dry ether
(CH3CH2CH2)2 + 2NaI
4]Using Cuprate method:
R2Cu Li + R/-X
R- R/
e.g.
i) (CH3CH2)2CuLi + CH3Br
CH3CH2 CH3
-Cl
-CH3
iii) (CH3)2CuLi +
Reaction of alkane
Saturated hydrocarbon=paraffinic hydrocarbon
Parum=little
Affinis=affinity
A]Halogenations:
-Chlorination of alkane ------- mixture products (why)
e.g:i)
H
heat
Cl2+ H-C-H
H
UV
ii) CH3CH2CH3+ Cl2
Cl
Cl-C-Cl + HCl
Cl
CH3CH2CH2 Cl +CH3CHCH3
8
Cl
CH3CH2CH2 Br+CH3CHCH3(m)
Br
CH3
CH3CHCH2 Br +CH3C-CH3(m)
CH3
Br
iii) CH3CH2CH3+ Br2
iv) CH3CHCH3+ Br2
CH3
Isobutane
1-bromo-2methyl
(2-bromo-methyl )
* 30>20>10
B] Combustion of alkanes (oxidation):
-Heat source of power in home
General equation:
CnH 2n+2 +
3n+1
O2
nCO2+ (n+1)H2O + heat
2
Specific examples:
CH4 + 2O2
C2H6 +7/2 O2
C3H8 + 5O2
CO2 +2 H2O + 213 kcal/mol
2CO2 +3 H2O + 373 kcal/mol
3CO2 +4 H2O + 531 kcal/mol
* 160 kcal/mol (for each methylene gp.)
Cycloalkanes
9
-Ring (not active). 3&4 (reactive) -Add cyclo
-With subs. Name it 1st
CH3
Methyl cycloprpane
CH2 CH3
ethyl cyclobutane
- Point of attached is (1)
CH3
not
CH3
CH3
CH3
1,3-dimethylcyclohexane
1,5- dimethylcyclohexane
Geometric isomerism:
-Straight chain C-C (free rotation) -Cyclic (no free rotation)
- No free rotation (Geometric isomerism)
-cis (same)
-trans(different)
CH3
CH3
CH3
CH3
Cis-1,2-dimethylcyclopropane
trans
Cis & trans(same struc. Diff. in configuration)
Reactions of Cycloalkanes:
10
Cl
Cl2,
i)
+HCl
Light
HI
ii)
CH3-CH2-CH2I
H2SO4
CH3-CH2-CH2-OH
H2O
H2, Ni
CH3-CH2- CH3
Br, CCl4
Br-CH2-CH2-CH2-Br
/or
Al Br3
CH3-CH2-CH2-Br2
CH3
Br
CH3
Br,

+HBr
iii)
light
iv)
H2, Ni
CH3CH2CH2CH3
 light
11
Alkenes and Cycolalkenes
CnH2n
IUPAC:
1) Longest continuous chain
2) Ane------ ene
3) C=C have lowest No
4) Position of C=C (indicated by lower No)
5) In Cycolalkenes = between C 1&2 (subs.
have lowest No)
Common name
IUPAC
CH3CH2CH=CH2
H2C=CH2
Ethylene
Ethene
H3CHC=CH2
Propylene
propene
CH3CH=CHCH3
1-butene
2-butene
CH3
CH3CHCH2CH=CH2
4-methyl-1-pentene
CH3
Cl
CH3-CH2
3-methylcyclohexene
3-chloro-4-ethylcyclobutene
Compounds derived from ethylene and propylene
* CH2=CH* CH2=CH-CH2-
vinyl gp.
allyl gp.
12
CH2=CH-Br
Common name
IUPAC
CH2=CH-CH2- Cl
Vinyl bromide
Bromoethene
Allyl chloride
3-chloro-1-propene
CH =CH2
Common name
IUPAC
Vinyl cyclohexane
Cyclohexylethene
SP2Hyperidization:
- 3 equivalent SP2 orbitals (one SPZ)
- Angle of SP2 120o
- 2 PZ are perpendicular.
δ SP2
- SP2----π
- 2Pz---- 2Pz
H2C
π
δ
CH2
- π is weaker than δ
* C---C (1.54 Å) < *C=C (1.34 Å) Why?
-Reactivity ( Electron density from π)
- No Free rotation (need UV& ∆)
- 2C & 4H in same plane
- Restricted rotation ---- geometric isomerism
13
- Cis and Trans are stable (diff. physical properties,
same chemical)
-If two identical gp. To one of C=C(no Cis &trans)
CH3
H
CH3
C=C
CH3
H
CH3
C=C
H
Prpene
Cl
C=C
CH3
H
H
Cl
2-methyl-2-butene 1,1-dichloropropene
* Other system is E & Z
- According to priority (atomic No.)
-Cl>F
CH3> H
Br>H
I>CH3
-Higher priority (same side) -- Z(zusammen, together)
- Higher priority (diff. side) -- E (entgagen, opposite)
Cl
C=C
F
CH3
F
CH3
C=C
Cl
H
H
Z-1-Chloro-1-fluoropropene
E-1-Chloro-1- fluoropropene
Cl & CH3 (same)
Cl &CH3 (diff.)
Br
H
Br
I
C=C
H
CH3
Z-1-Bromo-2-iodopropene
Br & I (same)
F
C=C
Cl
E-1-Bromo-2-chloro-2-fluoropropene
Br & Cl (diff.)
14
Physical properties
Solubility:
* All at room temp. * Non polar compounds
* C1-C4 gas C5-C17 liquids C18 and > wax
like solids
* Like dissolves like, benzene, ether, CCl4
Preparation of alkenes:
2) Elimination reaction
General equation
C= C
-C - C A
+ AB
B (A = H or halogen, B=OH or halogen)
1) Dehydration of alcohols
Mineral acids (H2SO4, H3PO4)
General equation
H+
-C -C -
C= C
∆
+ H2O
OH H
eg.
CH3 – CH2OH
H+
CH2 = CH2 + H2O
∆
OH
H+
+ H2O
∆
H
15
Saytzeff's Rule
H+
CH3CH2CH=CH2 + H2O
1. Butene
(minor)
∆
2- butanol
CH3CH2CHCH3
OH
CH3CH=CHCH3 + H2O
2- Butene
(major)
(2) Dehydrohalogenation of alkyl halides
gen. equ.
Alcoh.
- C - C - + KOH
H
C= C
∆
X
H Br H
i) CH3–CH–CH–CH2 + KOH
CH3CH=CH–CH2
major
ii)
H3 C
+ KX + H2O
Alcohol
∆
+ CH3–CH2–CH=CH2
minor
CH3
CH3
H
Br
Alc.
+ KOH
H
∆
H
(3) Vicinal dihalides
gen. equ.
– C – C + Zn
+
1 methyl cycl.
3 methyl cycl.
Eth. Alc.
∆
X X
16
C= C
+ Zn X2
acetone
i) H3C–CH–CH2 + NaI
Br Br
H3C-CH = CH2 + I2 + NaBr
ii)
Br
+ NaI
acetone
+
NaBr + I2
Br
Reactions of alkenes
gen. equ.
H
H
H H
H
C=C
H
+A-B
-C-CB A
1]Addition of hydrogen:
H
H
H
H
C=C
H
H
Pt / Ni
+ H2
Low pr.
-
-C-CH
i) CH3CH=CHCH3+H2
H
CH3CH2CH2CH3
2] Addition of halogens (Halogenations):
gen. equ.
H
H
H
C=C
H
In. sol.
+X2
-
-C-CX X
17
CCl4
i) CH3CH=CH2 + Cl2
CH3CHClCH2Cl
Cl
ii)
+ Cl2
CCl4
Cl
3] Addition of HOX (Halohydrin formation):
CH3CH=CH2 +Cl2, H2O
CH3CHOHCH2Cl
1-chloro-2-propanol
CH3CH=CH2 +Br2, H2O
CH3CHOHCH2Br
1-bromo-2-propanol
4] Addition of acid:
gen. equ. [HX = H2SO4(H2O,H+),HCl, HBr,]
H
H
H H
H
C=C
H
+HX
-C-CH X
a)Sulfuric acid( H2SO4= H-OSO3H)
H
H
H
C=C +H- OSO3
H
OSO3
-C-C-
H
CH3CH=CH2+ H2SO4
CH3CH OSO3-CH2H
18
B)Addition of water(hydration):
H+
CH3CH=CH2+HOH
CH3CHOH-CH3
C) Addition of hydrogen halides:
CH3CH=CHCH3 + H-Cl
CH3CHHCHCLCH3(one)
CH3CH2CH=CH2 + H-Br
CH3CH2CHBrCH2H +
CH3CH2CHHCH2Br
Markovinkov's Rule
5] Ozonolysis:
Alkene+O3
ozonoid + H2O
Aldehyde+ Ketone
H2O
C = C + O3
Zn
R
R
C= O
+ O =C
H
R
6] Oxidation:
R+ oxidation (KMnO4 ,H2O2, OsO4)
Di-alcohol
dil.KMnO4
i) H2C=CH2
H2COHCH2OH + KMnO4
cold H2O
ii)
OH
1) H2O2
2)Acidify Water
OH
19
iii)
CH3
1) H2 SO4
CH3
2) OsO4
OH
OH
Epoxidation:
i) CH2=CH2 + O2
H2C
Ag
CH2
250
O
ii)
RCO3H
iii)
O + RCOOH
C =C
H3C
CH3-CO3H
C
H3C
CH3
20
H
O
H
C
CH3
Alkynes and Cycloalkynes
Cn H 2n-2
* SP: 2π
one δ
* Linear 180
* IUPAC
HC CH (acetylne)
1.20 Å
C2H5CCH (1-Butyne)
CH3-CH2-CH-CC-CH2-CH3
5-Methyl-3-heptyne
CH3
CH3
H3C-C-CH2-CCH
CH3
4,4-Dimethyl-1-pentyne
Cl
CH3
CH3-CH-CH-CC-CH-CH2-CH2 -CH3
CH3
3-Chloro-2,6-dimethyl-4-nonoyne
Physical properties
Solubility:
* All at room temp. * Non polar compounds
* C2-C4 gas
C5-C17 liquids
C18 > wax like solids
* Like dissolves like, benzene, ether, CCl4
21
Preparations of alkynes:
1] Dehydrohalogenation of alkenyl halides
-C C- + 2HX
-C=CHX
Na NH2
ii) CH3CH2CH=CHBr
CH3CH2CCH
∆,st.ba
2] From Calcium Carbide:
3C+ CaO
CaC2 + 2H2O
CaC2 + CO
Na NH2
H-CC-H + Ca(OH)2
3] Reaction of Sodium acetylide with(1RX):
Acetylene + Na
Liq.
H-CC: Na+ H2
Ammon.
Terminal CC------- Terminal CC
Liq.
H-CC: Na + R-X
Ammon.
H-CC-R + NaX
Monosub. CC------- Non Terminal CC
22
R- H-CC: Na +R/X
R- CC-H + Na
Na X+ R- CC- R/
iii) CH3-CC-H + Na
CH3-CC: Na
+CH3CH2Br
NaBr+ CH3-CC-CH2CH3
2-pentyne
Reactions of alkynes: (Addition)
Alkyne------ alkene------alkane
-CCC=C
C-C
1)Addition of H2
* Depend on catalyst
- With (Pd /NiB2) or (Pd/ CaCO3)---Cis.
- With (Na, NH3 or Li, NH3)---- Trns.
i) CH3-CC-CH3+H2
Pd
CH3-CH=CH-CH3+H2
Pd
or Ni
CH3CH2CH2CH3
Pd/
Poisoned
ii) CH3-CH2CC-CH3+H2
23
H5C2
CH3
C=C
Cis-2-pentene
H
H
Na or Li
ii) CH3-CH2CC-CH3+H2
NH3
H5C2
H
C=C
trans-2-pentene
H
CH3
4] Addition of water:
H2SO4
-CC- +H2O
-C=C-
HgSO4
- C-CH
H OH
Enol
O
(ald./ ket.)
i)
H3C-CC–H + H2O
H2SO4
HgSO4
H
H
H3C- C = C
OH
H
H3C–C–CH3
O
Acetone
ii)
O
C CH
C
CH3
H2SO4
+ H 2O
HgSO4
OH
OH
iii)
H-CC – H + H2O
H2SO4
HgSO4
H O
H–C–C–H
H
3] Addition of halogen
– CC – + X2
CH3CH2CCH + Cl2
– C=C – + X2
X X
CH3CH2C=CH + Cl2
Cl Cl
24
X X
– C–C –
X X
Cl Cl
CH3CH2C–CH
Cl Cl
4] Addition of hydrogen halide
– C  C –+ HX
–C = C– + HX
H X
Haloalkene
CH3CH2–CCH + HBr
CH3CH2–C=CH + HBr
Br H
H X
–C – C–
H X
gem-dihalide
Br H
CH3CH2–C–CH
Br H
Visual Test For Alkynes
R-CCH+AgNO3
R-CC- R +AgNO3
R-CC-Ag(precipitate)
R-CC-R (no reaction)
R-CCH+CuNO3
R-CC-Cu(precipitate.)
R-CC R +CuNO3
R-CC-R(no reaction)
25
Benzene & Aromatic compounds

SP2
 Unsatisfactory principle
1) 1,3,5-Cyclohexatriene ---- irregular
(1.34) but x-ray---- c-c equal length 1.39 Å
2) Reaction is substitution (not addition).
I
II
3=(1.54),3-
III
  electron cloud --- resonance this helps to explain lack of
reactivity of benzene – great stability (substitution #
addition )
Stability of benzene:
*  H2 to C=C ---- 28.6 kcal/ mol
*  3 H2 to C-C ---- 85.8 kcal/ mol
*
3H2 to C =C ---- 49.8 kcal/ mol
benzene +3H2
cyclohexane + 49.8 kcal/ mol
85.8 - 28.6= 36.0 kcal/ mol
benzene more (less energy or) stable by 36 kcal/ mol
Aromatic character:
-Aromatic compounds:
i)cyclic comp.
ii) Conjugated
ii) n=0,1,2,3—etc.) (4n+2=)
26
Huckel's rule
(4n+2)
Nomenclature of aromatic compounds:
A] Mono substituted benzene
*because all C equal no numbers
*Substituent and then benzene
Cl
Chlorobenzene
NO2
Ethyl benzene
1-Butylbenzene
Nitrobenzene
Some have common:
O
CH3
Toluene
H
O
OH
OH
Phenol
NH2
Benzaldhyde
27
Benzoic acid
Aniline
Benzene as alkyl group:
 Phenyl gp.
Benzyl( Ph or  ) Benzoyl
CH3
CH2-
O
Cl
-H
Toluene
benzyl gp
CH2Cl
Benzoyl Chloride
CH2OCOCH3
Benzyl chloride
Benzyl acetate
OCH3
CH3CHCH2CH2CH2CH3
2-Phenylhexane
Methoxy benzene
B] Disubstituted benzene:
1- ortho (), meta(m), para ()
Br
Br
NO2
Br
Br
Br
1,2-Dibromobenzene
O- Dibromobenzene
1,3-Di.
m- Di.
Br
1,4-Dibr.be.
p- Dibr.be
28
NO2
1,3-Dinitrobenzene
m- Dinitrobenzene
2-Substitution diff. ---alphabetical.
F
C2H5
NO2
Cl
I
Br
1-Chloro-2-ethylbenzene 1-Floro-4-iodobenzene
o-Chloroethylbenzene
P- Floroiodobenzene
1-bromo-3-nitrobenzene
m- bromonitrobenzene
3]If Substitution is part of parent compound the disubs.
named as derivative from it
CH3
OH
OH
COOH
Cl
NO2
2-Chlorophenol
O-
4-Nitrotoluene
p-
NH2
Br
3-Bromobenzoic acid
m-
4-Aminophenol.
p-
4]Common name
CH3
CH3
CH3
CH3
CH3
O-Xylene
m-Xylene
CH3
p-Xylene
29
C] Polysubstituted benzene:
- 3 or more subs. Must numbered
- If one subst. from parent we name the compounds
relevant to it
No2
Br
Br
F
Br
Cl
3-Chloro-5-floronitrobenzene
1,2,3-Tribromobenzene
CH3
OH
Br
O2N
Br
NO2
NO2
Br
2,4,6-Tribromophenol
2,4,6-Trinitrotoluene
COOH
Br
OCH3
2-bromo-4-methoxybenzoic acid
30
Reactions of Aromatic:
i] Reaction of unsubstituted benzene
1) hyalogination:
Cl
FeCl3
Cl2
HCl
lewis acid
2) Alkylation (Friedel –craft ):
CH3
CH3Cl2
AlCl3
HCl
Cl
O
O
AlCl3
Diphenyl keton
3) Nitration :
NO2
HNO3+H2SO4
NO2
HNO3+H2SO4
heat 50-55
heat 50-55
NO2
4)Sulfonation
SO3H
SO3
H2SO4
H2O
31
ii] Reaction of Side-Chain(substituted benzene)
-Electrophelic substitution
-Substituent can be:
a)Activating gp. Which make benzene ring more
reactive (electron donating gp)
b) Deactivating gp. Which make benzene ring less
reactive (electron withdrawing gp.)
Deact.gp
Activ.gp
More Reactive
A} Ortho-Para director:
*Strongly Activating gp.
–NH2 , NHR, -NR, -OH, -OR
*Moderately Activating gp. –C6H5, -CH3, R(Alkyl gp)
* Weekly deactivating gp.
F, Cl, Br, I
B} Meta director:
*Strongly deactivating gp.
-NO2, -SO3H, -CN, -CHO
-COOH, -COR
1)Halogenation
a) alkyl side chain
CH3
CH2Br
Br2
i-
HBr
UV
32
CH2CH2Cl
CHClCH3
CH2CH3
Cl2/ UV
Minor
Major
ii-
b) substituted benzene
with CCl4, AlCl3,FeBr3 (two)
OH
OH
OH
Br
Br2/ CCl4
+
Br
OH
OH
OH
Br
Fe Br2/ CCl4
3
+
Br
OH
OH
Br
Br
Br2
H 2O
Br
OH
OH
Cl
Cl2 / CCl4
Br
Br
33
OH
OH
OH
Cl
Cl2 / AlCl3
Cl
CH3
CH3
CH3
OH
OH
OH
Cl
Cl2
CCl4
Cl
CH3
CH3
CH3
2- Nitration of alkyl side chain
OH
OH
OH
NO2
Dil.HNO3
NO2
CH3
CH3
NO2
NO2
coc. HNO3
coc.H2SO4
NO2
34
NO2
NO2
Conc. HNO3
Conc. H2SO4
O2N
NO2
NO2
NO2
dil. HNO3
NO2
3-Oxidation of alkyl side chain:
COOH
CH3
hot. KMnO4
COOH
C2H5
hot. KMnO4
CH3
CO2
COOH
KMnO4
CH3
COOH
35
H2O
Organic Halides
Source &important:
1-Rare in nature produced by micro. Algi.(Ab. Th.)
2-used (hormone, detergent)
3-intermediat for synth.
Classes & Names:
According to hydrocarbon gp.
1-Alkyl halides( R-X):
1,2 & 3(no H attached)
CH3CH2CH2Br
CH3CHFCH3
CH3Cl
Comm. Methyl Chloride
IUPAC Chloromethane
Class
1
n-propyl bromide
1-Bromo propane
1
isopropyl fluoride
2-fluoropropane
2
CH3
I
Cl
CH3
C
CH3
Br
Comm. Cyclo hexyl iodide
Methyl cyclopentyl chloride
t-Butyl bromide
IUPAC idocyclohexane 1-Chloro-1-methylcyclopentane 2-bromo2-methylpropane
Class
2
3
3
CH3
2-Allylic halides
C=C-C- X
CH2=CHCH2Br
Comm.
IUPAC
Allyl bromide
3-Bromo-1-propene
CH3CH=CHCH2Cl
Allyl chloride
1-Chloro-2-butene
Br
Cl
3-Chlorocyclopentene
36
3-Promocyclohexene
3-Vinylic halides
C=C-X
CH2=CH-Cl
Vinyl Chloride
CH2=CH-Br
vinyl Bromide
Br
Cl
1-Chlorocyclopentene
1-bromocyclohexene
4-Benzylic halides:
Ar-C-X (
halogen one carbon away from aromatic
ring)
Br
CH2Cl
C
H
Benzyl Chloride
Diphenyl bromide
5-Aryl halides:
Ar-X
(X directly attached to  )
Br
Cl
CH
CL 3
Chlorobenzene
p-Bromo toluene
Physical Properties:
- sol. In organic solvent (in sol. In H2O)
- BP.  with  Mwt.( Straight chain  branched)
- F <Cl <Br <I
37
Preparation Of Halogen compounds:
1]Direct Halogenation of hydrocarbons
a) Halogenation of alkanes(alkyl halides)
UV or Heat R-X + HCL
X2
R-H
CH4
UV or Heat CH Cl + HCL
3
Cl2
b)Halogenation of alkenes (allyl halides)
H2C CH-CH2R
H2C CH-CH3
X2
Br2
heat or UV
heat or UV
RXCH2-CH=CH2
BrCH2-CH=CH2
HX
HBr
c)Halogenation of benzene(benzyl halides)
Ar-CH2R
X2
heat or UV
ArCHXR
CH2CH3
HX
CHCl-CH3
CH2CH2Cl
CL
heat or UV
HCl
CH3
CH2Br
Br
heat or UV
HBr
d) Halogenation of aromatic ring (aryl halides)
Ar + X2
ArX + HX
Cl
Cl
heat or UV
HCl
38
2]Addition of HX to unsaturated hydrocarbons
a)To alkenes (alkyl halides)
CH2
H2C
CH2
H2C
UV/ heat
HX
CH2-CHX
2
UV/ heat
HI
CH2-CH2I
b)To alkynes (Vinyl halides)
C
C
C H
CH3CH2 C
CHX
2
H2C
HX
CH3CH2 - C
HBr
CH2
HBr
Br
3] Conversion of alcohol(alkyl halides)
Heat
R-OH + HX ( or PX3 or SOX2)
Heat
CH3-OH + HBr
OH
RX
CH3-Br
H2O
Cl
SOCl2
or PCl3
CH3
CH3
SOCl3
Cl
OH
CH2OH
CH2Cl
SOCl2 / PCl5
or PCl3
OCH3
OCH3
1 &2 need catalyst
3 without catalyst
C2H5
C2H5
C
C2H5
C2H5
OH
C
HCl
C2H5
39
C 2H 5
Cl
H2O
Reactions of organic halides:
1]Nucleophilic substitution reaction
a)RX+NaOH/ H2O(or(KOH/H2O)
CH2Br
ROH(alc.)
CH2OH
NaOH /H2O
NaOH /H2O
CH3CH2Br
CH3CH2OH
or KOH /H2O
b)RX+KCN /NaCN
CH2-Cl
R-CN(nitril)
CH2CN
KCN
c)RX+ NaOR/ alcohol( or KOR)
Cl
ROR(ether)
O-C2H5
KOC2H5 /alcohol
KCl
d)RX+R/-C≡C-Na(* liq.NH3)
C
CH3-Br
C-Na
liq.NH3
e) RX+ R'NH2/liq.NH3
R/-C≡C-R(alky.)
C C-CH3
NABr
RNHR' (amine)
O
O
Cl
liq.NH3
CH3CH2NH2
NHCH2CH3
HCl
40
g) RX+ NaI
Br
R-I
I
NaI
NaBr
2]Elimination reactions
CH2-CH-CHBr-CH3
dil.NH3
CH2-C=CH-CH3
heat
CH3
CH3CH2CH2Cl
CH2-CH-CH=CH3
CH3
CH3
dil. KOH
CH3CH=CH2 + HCl
heat
CH3CH2CH2Cl
dil. NaOH
CH3CH2OH + HCl
3]Reaction of Gregnared reagent
R-X +Mg
Ar-X +Mg
CH3CH2Br + Mg
R-X -Mg
Ar-X –Mg
dry ether CH CH MgBr
3
2
Br
Mg
H2O
1)dry ether
CH3CH3 +MgBr(OH)
MgBr(OH)
2)H2O
4]Reduction of alkyl halides(by metal and acid)
CH2-CH2-CHBr-CH3
H /Zn
or Li Al H4
/H3O
CH2-CH2CH2-CH3
41
HBr
Alcohols
Classification and nomenclature
H
C
H
H
oH
OH
C
H
R
H
OH
C
R
1
1
R
R
H
2
C
OH
R
R
3
CH3-OH
CH3CH2-OH
CH2=CHCH2-OH
methyl alcohol
ethyl alcohol
Allyl alcohol
2
OH
OH
CH
H3C
CH3
cyclopentyl alcohol
Isopropyl alcohol
3
OH
CH3
H3C
CH3
t-butyl alcohol
42
IUPAC:
1-longest continuous chain contain OH
OH
OH
CH3CH2OH
CH3OH
cyclohexanol
cyclopentanol
Ethanol
Methanol
2-With isomer chain no. so OH has lowest no
OH
OH
1-hextanol
2-hexanol
3-other alkyl or other substitution named alphabet.
And always OH lowest no
CH3
Cl
CH2CH3
CH3CH2CHCH2CH2CHCH2OH
CH3-CH2C-CH2-CH-CH3
OH
5-Chloro-2-methyl-1-heptanol
4-Ethyl-2-hexanol
4- Cyclic alcohol no. started from c near to OH
OH
OH
C6H5
CH3
Br
3-Bromo-2-phenyl cyclopentanol
2-Methyl cyclohexanol
5-OH with (C=C or C≡C)all in no matter longest chain
CH2CH3
CH2=CH-CHCH3
OH
3-Butene-2-ol
HC
CH3-CH-C=CH
OH
3-Ethyl-3-butene-2-ol
43
C-CH2-CH2-OH
3-Butyne-1-ol.
5-Mor thane OH (Diol- triol) or common name
OH OH
OH OH OH
CH2-CH-CH2
OH OH
CH2-CH2
CH3-CH-CH2
1,2-propanediol
1,2-Ethanediol
comm. Ethylene glycol
Propylene glycol
1,2,3-Propanetriol
Glycerol or glycerin
OH
OH
1,2-Cyclopentanediol.
OH
OH
OH
CH3
C6H5
Br
OH
2-Bromo-2-phynylcyclohexanol
Tranc-1,2-cyclohexan2diol
2-Methyl-2-cyclohexenol
2-Methyl-2-cyclohexen-1-ol
Br
OH
OH
4-Bromo-6-heptene-1-yn-3-ol
5-Hexene-1-yn-3-ol
CH2CH3
OH
3-ethyl-2-cyclohexenol
Physical properties
1-when no. of OH  Soluble. in H2Oinc.
2-BP.  with M wt. 
3- BP. In straight chain more than branched
4-in isomer BP. Dec. with  in alkyl gp.
3 < 2<1
5- alcohol BP. Higher thane it is alkenes ( hydrogen bond)
6-Alcohol week acids
44
Synthesis of alcohols
1] From alkenes:
i) CH
ii)
2=CH2
H2O
H2SO4
H2SO4
H2O
CH3CH=CH2
Conc.
Conc.
CH3CH2OH
CH3-CH-CH3
OH
OH
KMnO4
OH
iii)
OH
1) RCO3H
2) H3O
R-CH=CH2
iv)
1)B2H5
2)H2O2 / NaOH
CH3-CH=CH2
1)B2H5
OH
R-CH2-CH2OH
CH3CH2CH2OH
2)H2O2 / NaOH
2]From alkyl halides :
ROH +HX
RX+ HOH
CH3
H2O / OH
(CH3)3-C-OH + HCl
CH3-C-Cl
CH3
CH2-Cl
NaOH / H2O
45
CH2-OH
3] From reduction of aldehyd &ketones:
RCHO
(1 & 2 only no 3)
Reducing agent
Reduction
RCH2OH
- Zn / H+ , Zn / HCl , Na / alcohol , NaBH4 /H2O ( for ald., or ket.)
-H2 / Pt or Pd or Ni (=)
- Li Al H4 /dry ether(all CO)
1:
O
R-C-H
OH
R-CH2
1) Li Al H4 / dry ether
2)1) H O
or NaBH4
3
O
CH3-C-H
1) Li Al H4 / dry ether
2)
or NaBH4
1) H3O
CH3-CH2OH
2:
O
R-C-R
OH
R-C-R
H
1) Li Al H4 / dry ether
2)
1) H3O or NaBH4
O
CH3-C-CH3
CH3
H C-OH
CH3
1) Li Al H4 / dry ether
2)1)
or NaBH4
H3O
1:
O
R-C-OH 1) NaBH4 Li Al H4
2)1) H O
2
O
1) NaBH4 Li Al H4
CH3-CH2-C-OH
2)
1) H2O
46
OH
R-C-H
H
CH3CH2CH2OH
4] From Grignard reagent:
for (1 , 2 & 3)
a) with ester:
O
1) dry ether
R-C-OR'' +2RMgX
2)1) H2O
O
CH3-C-O-C2H5 +2CH3MgX
OH
R-C-R
R
1) dry ether
2)1) H2O
R''-OH
OH
CH3-C-CH3
CH3
C2H5-OH
b) with aldehyde:
O
H H + RMgX
1) dry ether
RCH2OH
2) H2O
O
1) dry ether
CH3CH2CH2OH
i- H H+ CH3CH2MgCl
2) H2O
2)
O
ii) CH3-C-H +CH3CH2MgCl
1) dry ether
2)1) H2O
c) with ketones:
O
1)dry ether
R"-MgX + R-C-R
2)H2O
CH3-MgBr
O
OH
R-C-R
R"
1)dry ether
2)H2O
47
H
CH3-CH2-C-OH
CH3
OH
CH3
Reactions of alcohols:
-alcohols don't react with strong bases (only with metal )
1- Salt Formation:
R-OH + Na
RONa + H2
+Na
CH3-OH
CH3ONa ( sodium methoxid)
+NaOH
no reac. strong bas.
+NaHCO3 no reac. week bas.
CH3
CH3 C-OH +Na
CH3
CH3
CH3 C-ONa
CH3
2-Dehydration:
CH3
CH3
CH3CH2 C-CH3 Conc. H2SO4 CH CH=C-CH
+ H2O
3
3
OH
conc. H2SO4
+ Minor
OH
maj.
2-Ester formation:
O
RCOH + R'OH
acid
alcoh.
O
CH3CH2-C-OH
O
H+
R-C-OR'
hydro.( H2O)
CH3CH2OH
48
H+
H2O
O
CH3CH2-C-OC2H5
O
O
H+
OH
HO
O
O
O
O
H
CH3CH2OH
H+
O
CH2CH3
3] Reaction with alkyl halides
1 &2 need catalyst 3 no
PCl3 or SOCl2 or PBr3
(with ZnCl2)
R-OH
CH3CH2OH
CH3
CH3-C-OH
H
PBr3
CH3CH2Br
ZnCl2
HCl
ZnCl2
CH3
CH3-CH-Cl
CH3
C Cl
CH3
C OH
CH3
RX
PCl3
H 3C
CH3
49
CH3
3] Oxidation:
1& 2 only
with 1 and weak oxidizing agent------ aldehyde
O
H
Cu / heat
i) R-C-OH
R-C-H
or
CrO
/
pyridine
3
H
*) CH3CH2OH
Cu / heat
week oxidizing agent)
(aldhyde)
O
CH3-C-H
with 1 and strong oxidizing agent------ carboxylic acid
O
H
ii) R-C-OH
H
H2Cr2O7 / H+ or( K2Cr2O7)
R-C-OH
(carboxylic acid)
or KMnO4, Heat (neutral)
COOH
CH2OH
K2Cr2O7/ acid
*)
CH3
iii) CH-OH
CH3
(benzoic acid)
or KMnO4, Heat (neutral)
K2Cr2O7/ acid
or KMnO4, Heat (neutral)
3 alcohol ------no reaction
50
CH3
C
CH3
O
(keton)
Phenol
OH
OH
OH
OH
NO2
Br
4-bromoph.
NH2
p-aminophenol
Phenol
-2-nitro
NO2
2,4,6-trinitrophenol
Picric acid
OH
OH
OH
NO2
NO2
OH
OH
OH
OH
OH
hydroquinone
Resorcinol
Catechol
OH
OH
OH
OH
pyrogallol
CH3
CH3
CH3
m-Crysol
e
3-Methylph.
o-Cresol
2-Methylph.
p-Cresol
4-Methylph.
Physical Properties:
-Bp. Of phenol > alcohol
OH
NO2
OH
OH
NO2
O2N3
CH
NO
2
NO2
OH
OH
NO2
ON2
(NO2) is e with. (deact.gp) acidity
51
CH3
(CH3)is dona.gp. acidity
Preparation of phenols:
1-From Diazonium salts
N2Cl
OH
H2SO4 (heat)
N2
H3O or H2O
2-From alkali fusion of sodium benzene-sulfonates
SO3H
H2SO4
SO3 ,heat
OH
O : Na
2 NaOH
350 o
SO3H
CH3
NaOH (70%) or KOH(30%)
H3 O
or H+
O : Na
CH3
H3 O
or H+
OH
CH3
o
2
350-350
C
Reaction of phenol
1-Oxidation
O
OH
K2Cr2O7 / H+ (or H3O)
or Na2Cr2O7 or KMnO4
O
OH
3-Ester formation:
O
O-C-CH3
O O
O
CH3-C-O-C-CH3
+ CH3-C-OH
carboxylic acid anhydride
52
OH O
C-OH
O
O-C-CH3
CO2H
O
CH3-C-Cl
+ HCl
acid choride
acetyl sal.ac.
salicylic acid
OH O
C-H
O
OH O
C-O-CH3
CH3OH / H+
+ H 2O
alcohol
ester
4-Reaction of aromatic nucleus of phenol
OH
OH
NO2
(dil) HNO3
o
250 C
NO2
OH
OH
OH
o
+ Br2 / CCl
SC2 4, 5 C
Br
Br
OH
+3Br2 / H2O, 250o Br
Br
3 HBr
Br
o
OH
SO3H
conc. H2SO4 / 25 C
53
Ether
R-O-R
Ar-O-r
Ar-O-Ar
Ether : sub. With 2org. resi. Bond.(O) alky.,ary.,vin.
(symm.)
CH3-O-CH3
CH3CH2OCH2CH3
Dimethyl ether
Diethyl ether
CH2=CH-O-CH=CH2
Divinyl ether
CH2=CHCH2-O-CH2CH=CH2
Diallyl ether
O
diphenylether
(unsymm.)
C2H5O-CH2CH2CH2-OC2H5
CH3CH2-O-CH3
CH3OC(CH3)3
CH3CH2OCH=CH2
O
1,3-Diethoxy propane
Ethyl methyl ether
t-Butyl methyl ether
Ethyl vinyl ether
CH3
methyl phenyl ether(anisole)
Nomenclature:
Simple:
By identify the 2 organic &add word ether
Complicated:
CH3-CH-CH3
OCH3
2-methoxy propane
CH3-CH-CH-CH2-CH3
CH3 OC2H5
3-ethoxy-2-methyl pentane
CH3CH2-O-CH(CH3)2
Ethyl isopropyl ether
54
OH
OCH3
CH3
OCH3
p-methyl anisol
tranc-4-methoxy cyclohexaol
1-methoxy-4-methyl benzene
O
OH
O
3-methoxy-1-propene
3-ethoxy-1-propanol
OCH3
CH3
O-C-CH3
CH3
OCH3
4-t-Butoxy-1-cyclohexen
p-dimethoxy benzene
Preparation of ether:
1)Dehydration of alcohols:
(from 1 for symm. only)
R-O-R + H2O
2R-OH H+
heat
2CH3CH2-OH
H2SO4
140
CH3CH2-O-CH2CH3 + H
H2SO4
180
2CH2=CH2+ H2O
2 &3 ----------- no reaction
2)The Williamson synthesis :
R-OH + Na(metal)--------- R-O-Na ( sod. Alkoxid)+ H2
Sod. alkoxides + organic halides(1&2)--- ether (sy. &unsy.)
55
CH3
CH3-C-O-CH3
CH3
CH3
CH3-C-O-Na CH3-Br
CH3
Na-Br
(t-butyl methyl ether)
OCH3
O-Na
CH3Cl
NaCl
OC2H5
O-Na
C2H5Br
NaBr
(ethyl phenyl ether)
3 halides, benzyl halide and vinyl halides + alkoxi.-----no rea.
4)Cyclic ether:
using pear acid
RCO3H
i] CH2=CH2
O
C-O3H
Cl
O
ii]
1,2-epoxycyclohexane
CHOH-CHOH
H2SO4
heat
O
H2O
Reactions of ether
I] with conc. HI or HBr or HCl
heat
R-O-H + R I
R-O-R + HI
H2O
56
heat
C2H5-O-C2H5
+ HI
OCH3
HI
H 2O
OH
H2O
heat
H2O/ H+
CH3I
OHCH2-CH2OH
CH3OH/ H+
OH OCH3
CH2CH2
X OH
CH2-CH2
HX / H+
O
C2H5-O-H + C2H5 I
1)CH3MgX/ether
2)H2O
1)Li Al H4
2) H3O
NH3
CH3CH2CH2OH
CH3CH2OH
OH NH2
CH2-CH2
Phenol
CH2CH2
Ph OH
O
Physical prp.
-No hydrogen bond
-Bp. = it's same alkanes
-react with are ----eproxides
57
Aldehydes & ketones
CnH2nO
Aldehyd
R
C
H
R
Ar
C O
H
aromatic ald
O
alphatic ald.
Ketone
R
C O
R
alphatic ket.
(+)
C=O(-)
Ar
C O
R
Aromatic ket.
polar react with acid and base
Nomenclature:
A]Aldehyde
1) Ald. up to 4 c by common name of the acids to which
they related
2) More than 4 by replacing e(from alkane) by –al
3) C of ald. Always No. 1 (not appear in the name)
H
C
H
O
comm. : formaldehyde
IUPAC: Methanal
CH3
C
H
O
Comm.: Acetaldehyde
IUPAC: Ethanal.
O
CH3-CH2-C-H
Comm. Prpionaldehyde
IUPAC: Propanal
CH3CH2CH2COH
(IUPAC: Butanal /Comm. Butyraldehyde)
4) Substituted ald. By alphabet. If (OH > C=C or CC )
ClCH2CH2CH2CH2COH
CH3CH2CH=CHCOH
5-Chloropentanal
2-Pentenal
58
CH3CHOHCHClCH2CHO
3-Chloro-hydroxy pentanal
5) Aromatic aldehyd derivatives of simplest aromatic
(bezald.)
O
H
O
H
H
O
O
H
OH
Bezaldehyde
NO2
o-hydroxy benzald.
OCH3
P-nitrobezald.
p-Methoxy benzald.
(Anisaldehyd.)
B] Ketones
1) Simple by alkyl substituent and word ketone
O
O
O
CH3-C-CH3
CH3-C-CH2CH3
CH3-C-CH=CH2
Comm. Acetone
IUPAC: Dimethyl ketone
Methyl ethyl ketone
O
Methyl vinyl ketone
O
Diphenyl ketone
(Benzophenone
Methyl phenyl ketone
(Acetophenone)
2] complicated ketones by IUPAC by replacing (e) by(-one)
(in longest cont. chain with C=O) ket. Take lower no.
CH3CH2COCH3
Butanone
CH3COCH2CH2CH2CH3
2-Hexanone
59
CH3CH2COCH2CH2CH3
3-hexanone
CH3CH2CHClCOCH2CH3
4-chloro-3-hexanone
CH3CH2CH=CHCOCH3
O
NH2
3-hexene-2-one
Br
4-Amino-5-Bromo-2-pentanone
4) If position of C=O not clear no. is needed for no.
O
O
CH3-C-CH2-CH3
CH -C-CH -CH -CH
3
2
2
2-pentanone
2-Butanone
O
Cyclopentanone
O
CH3
O
2-methyl cyclohexanone
CH3
3-methylcyclohexanone
Physical Prop.
-Simple ald. & keto. Soli. in H2O
- If R (inc) soli. (dec.)
- more than 6 C insole.
B.P
ald &ket. > alkane (same m.wt) Why?
Dipole-dipol.
O
--------
3
C
C -------- O
60
Preparation of Aldehydes & ketones
1]Oxidation of alcohol:
1& 2
RCH2OH
CrO3 / pyridine
O
R-C-H + H2O
or, Cu /heat(week oxidi).
R
O
KMnO4
R-C-R
R-C-OH
neutral
H
2] Ozonolysis of alkenes
CH3
CH3
1) O3
CH2O
C=O
C=CH2
2)Zn, H2O
CH3
CH3
3] Hydrolysis of alkynes
(C≡C+ H2SO4 --ald)
H2SO4, H+
(CH3)2-C=O (acetone)
H2O
O
H2SO4, H+
H2O
4] Friedel Craft acylation:
O
O
+ Cl-C-R
i)
O
O
+ Cl-C-CH3
ii)
CH3
iii)
R
AlCl3
CH3
AlCl3
CH3
O
+ Cl-C-C2H5
AlCl3
O
C2 H 5
+ para
61
Reactions of Aldehydes and ketones:
1] Addition of metal hydrides( formation of alcohol)
H2 / Pt
CH3CH32-CH2-CH2-CH2OH
H
CH3-CH=CH-CH2-C=O 1)NaBH
4 CH -CH=CH-CH -CH OH
3
2
2
2)H2O
O
1) LiAl H4, ether 2)H3O+
R-C-R'
R-CHOH-R'
(2 alco.)
O
1) LiAl H4, ether 2)H3O+
R-C-H
or 1) Na BH4 2) H2O
R-CH2OH
(1 alco.)
O
CH3-C-H
O
CH3-C-CH3
1) Na BH4
2) H2O
CH3-CH2OH
1) Na BH4
2) H2O
CH3-CHOHCH3
(1 alco.)
(2 alco.)
2] Reactions with Grignard reagent:
1)dry ether
2) H3O
R-CHO + R'-MgX
CH3-CHO + CH3-MgCl
R-CO-R' +R''-MgX
R-CHOH-R'
1)dry ether
2) H3O
1)dry ether
2)H2O
CH3CHOHCH3
R''
R-C-R'
OH
1)dry ether
2)H2O
CH3CO-CH3 +CH3-MgX
62
OH
CH3-C-CH3
CH3
OH
C2H5
O
1)dry ether
+ CH3CH2-MgX
2)H2O ,H+
(3 alc.)
CH2OH
MgBr
1)dry ether
2)H2O ,H+
+ CH2O
3]Addition of alkynide ions: {R-C≡C(-)}
R-CO-R'+ R''-C
C-Na
H3O+ R-COH-C
R'
H O
CH3CH2CHO + CH3C CNa 3
H
C-R''
+NaOH
OH
CH3C-C C-CH3
H
+NaOH
4]Addition of hydrogen cyanide (cyanohydrins formations):
NC-C-OH (cyanohydrin)
Ald or Ket. + HCN
O
CN
COH
H
H
+ HCN
O
HCN
OH
CN
Li Al H4
H3O
63
mandelo nitrile
OH
CH2NH2
OH
H2OH3HH2
CH3-C-COOH
H
H (hydroxy acid)
OH
HCN CH -C-CN
3
CH3CHO
H
CHO
HCN
OH
C-CN
H
H2
/Pt
OH
CH2-C-CH2NH2
H (1 amin)
OH
CCH2NH2
H
1)Li Al H4
2)H2O
OH
C-COOH
H
H3 O
heat
5] Addition of alcohols
Ald.. + alcoh.
—H+--Ket. + alcoh.
—H+---
hemicital
hemiketal
a)Hemiacitals formation
OH
CH3-C-OCH3
(1-methoxy ethanoal)
H
hemiacetal
O
H
CH3-CH + CH3-OH
CH3CHO + CH3CH2OH
64
H+
OH
CH3-CH
OCH2CH3
b)Hemiketals formation
CH3COCH3 + CH3OH H+
CH3COH-OCH3
CH3
c)Acetal formation:
OH
+ CH3CH2OH
CH3-CH
OCH2CH3
HCl
OCH2CH3
CH3-CH
OCH2CH3
(hemiacetal)
(acetal)
hydrolysis
2CH3CH2OH + CH3CHO
d)Ketal formation
OH
CH3-C-CH3 + CH3-CH2OH HCl
OC2H5
OC2H5
CH3-C-CH3
OC2H5
(ketal)
hydrolysis
CH3COCH3 + 2 CH3-CH2OH
O
+2 CH3CH2OH
HCl
OH
OC2H5
(hemiketal)
OC2H5
OC2H5
ketal
65
(C2H5)
hydrolysis
(H2O)
6] Addition of ammonia and it's derivatives
O
NR
+ R-NH2
+H2O
(Imine)
O
NOH
+NH2OH
+H2O
(Oxime)
N-NH2
O
+ NH2-NH2
+
(hydrazine)
H2O
(hydrazone)
O
NOH
+H2N-OH
cyclohexanone oxime
reduction of oxime
NOH
R
H
1) Li Al H4 ,ether R-CH -NH
2
2
2)H3O
( 1 amine)
N-OH
R
R
1)Li Al H4
R-CH-NH2
R
2) H3O+
66
( 2 amine)
7] Iodoform reaction
O
R + 3I2 + 4 NaOH
CH3
CHI3 + 3NaI +RCOONa + 3H2O
O
C2H5
CH3
+ 3I2 + 4 NaOH
CHI3 + 3NaI +C2H5COONa + 3H2O
8]Aldol condensation:
Aldehydes
O
2
H
O
CH3-CH-CH2-CH
OH
(3-hydroy butanal)
CH3
+ dil OH
(aldol)
O
O
dil OH
2 HC-CH2CH2CH3
CH3-CH2-CH2-CH-CH-CH
OH C2H5
CH3CH2CH2CH-CH-CH2OH
OH C2H5
H2
Ni
Ketones
2
CH3-CO-CH3 Ba(OH)2
CH3 O
CH3-C-CH2-C-CH3
OH
H2 /Ni
H / warm
CH3
CH3-C-CH2-CH-CH3
OH
OH
CH3 O
CH3-C=CH-C-CH3
67
O
H
no reaction
2
O
O
OH
C-CH2-CH
H
O
H
H3C
H
- H2O
CH=CH-CHO
(cinnamaldeyde)
O
+ CH3CH2CHO
dil OH
OH
CHCHO
CH3
O
2
CH3 O
C-CH2-C
OH
NaOC2H5
-H2O
heat
CH3 O
C=CH-C
2 CH-CH-CHO
3
2
dil. OH
5
68
O
OH
CH3CH2C-CH2-CH
H
Carboxylic acid
Ar-COOH
R-COOH
Aliphatic(aceticacid)
aromatic(benzoic acid)
Nomenclature of carboxylic acid:
1)
ane to
-ic acid
st
1 . for common
No.
Formula
IUPAC
C
1
HCOOH
Methanoic acid
2
CH3COOH
Ethanoic acid
3
CH3CH2COOH
Prpanoic acid
4
CH3(CH2)2COOH Butanoic acid
5
CH3(CH2)3COOH Pentanoic acid
OH
2-hydroxy ben. a
Common
Formic acid
Acetic acid
Prpionic acid
Butyric acid
valeric acid
Salicylic acid
COOH
Benzoic acid
COOH
2) Longest continuous chain
CH3CH2CHCH2CH2COOH
CH3
CH3CH2CHCH2CH2COOH
CH3
4-Methyl hexanoic acid
γ-Methyl hexenoic acid
    
C-C-C-C-C-COOH
CH3 CH3
CH3-CH-CH-COOH
(com.) -- Dimethyl butyric acid
(IU.) 2,3-Dimethyl butanoic a
CH3-CHBr-CHCl-CO2H
3-Bromo-2-chlorobutaric acid
69
3) In cyclic ring ------ cycloalkane carb. a'
COOH
COOH
COOH
cyclopropane
carb.ac.
COOH
cyclopentane cyclohexane
carb.ac.
carb.ac.
cyclobutane
carb.ac.
COOH
32-Cyclohexene carboxylic acid
5) Aromatic cid by common name
COOH
OH
COOH
(I)
Benzene Carbo. a'
(Com.) Benzoic a'
3-hydroxy
benzen C a'
2
O-hydroxy benzen C a'
Salisylic a'
CO2H
CO2H
CO2H
CO2H
(I)
Benzene-1,2-dicarboxilic a'
(comm.) Phthalic a'
70
(I)
Benzene-1,4-dicarboxilic a'
(comm.) Terephthalic a'
CO2H
p- amino benzoic acid
NH2
Physical properties:
1) They form hydrogen
2) comp. 1-7 soli in H2O . mor than 7 carbon less
soli. (bec. R increased)
3) Aromatic acids insoluble. In H2O
4) BP.
Acid > Alcohol
OH
COOH
OH
COOH
inc acidity
Deac. gps inc. acidity
COOH
COOH
>
NO2
Acti gps dec. acidity
NO2
>
NO2
COOH
COOH
>
>
inc. acidity
COOH
CH3
OH
HCOOH > CH3COOH > CH3CH2COOH > CH3 CH2 CH2COOH
More acidity
Substitution with halogen :
CH3CH2COOH
< CH2Cl-CH2COOH (more acidic)
CH3CH2COOH < CH2ClCOOH < CHCl2COOH < CCl3COOH
More acidity
71
Preparation of carb. a':
1] Oxidation
a) 1 alcohols & Aldehydes
RCH2OH -----[O]--- RCHO ----[O]---RCOOH
CH3CH2OH
KMnO4 / H+
CH2OH
CH3COOH
CH3CHO
COOH
CHO
KMnO4 / H+
or K2Cr2O7 /H+
Cu / Heat
or CrO3 / pyridine
R-CHO
RCH2OH
K2Cr2O7 / H+
RCOOH
or KMnO4 / H+
b) of alkyl benzene
CH3
COOH
KMnO4 / H+
OCH3 or K2Cr2O7 /H+
NO2
OCH3
NO2
CH3
KMnO4 / H+
or K2Cr2O7 /H+
72
COOH
CH2CH2CH3
COOH
KMnO4 / H+
or K2Cr2O7 /H+
2)Hydrolysis of nitrites
H+
R-X + NaCN
RCN +H2O
R-COOH
heat
OH
(K,Na,..)
RCOO
1)Li AL H4, ether
2)H3O or H2 / Pt
CH3CH2Cl
1)NaCN
CH2Cl
CH3CH2CN + H2O 2) H
heat
CH2CN
1)NaCN
RCH2NH2
amine
CH3CH2CO2H
CH2CO2H
2) H
+ H2 O
heat
3] Carbonation of Grignard reagent:
R-Mg X
1) CO2
CH3-Mg Br 1)CO2
Mg Br
R-COOMgX
CH3-COOMgBr
COOH
CO2
H3O
73
2) H3O
2) H3O
RCOOH
CH3COOH
+ Mg(OH)Br
Reactions of acids:
1)Salt formation:
it react with strong base & we can use Ca or K
RCOOK + H2O
RCOONa + H2O
sodi. acetate
RCOOH + KOH
RCOOH + NaOH
It reacts with week base
RCOONa + CO2 + H2O
RCOOH + NaHCO3
Sodium bicarb. Can be used to distinguish between
carboxylic acid and phenols
OH
NO reaction
+ NaHCO3
2) Formation of Easter:
RCOOH
R'-OH / H+
heat
OH
COOH
R-COO-R' + H2O
OH
COOC2H5
CH3CH2OH
H+ / heat
3) Formation of amide:
RCOOH
CH3COOH
NH3 or R-NH2 ,heat
NH3 , heat
R-CONH2
CH3-CONH2
4) Formation of acid anhydride:
O O
R-C-O-C-R
2 RCOOH
O O
H2SO4
2 CH3CH2COOH
CH3CH2-C-O-C-CH2CH3
H2SO4
5) Formation of acid chloride:
2 RCOOH
SOCl3, PCl3
or PCl5
2 CH3COOH SOCl3 , PCl3
or PCl5
74
O
2 R-C-Cl
O
2 CH3-C-Cl
Nomenclature of carboxylic acid derivatives.
When O of Carb. a' is replaced with Nu.------ Carb. a' deriv.
O
OH
R
O
O
Nu
R
Ar
O
R
O
Cl
O
R
OR' R
O
N
Acid anhydride
O
R
O-(K or Na)
Salts
1] Salt:
O
H3C
O- Na
Com.
Sodium acetate
IU.
h
Sodium etanoate
OH
COONa
from Acet.a'.
from Ethan.a'.
Sodium salisylate
75
O
R-C-O-C-R
Amide
Ester
Acid chl.
Aroyl chl.
Nu
3] Acid chloride:
Or aryl chloride by replacing –ic acid by –yl chloride.
O
CH3CH2
Cl
I (Com.) Proanyl chloride
from propanoic a'
Propionyl chloride
from propionic a'
Com. (I)
O
Cl
Cl
Phenyl chloride
Benzoyl chloride
4] Ester:
The alkyl gp. Named 1st then the name of parent acid
with ending –ate in place of -ic acid
O
Com. (I)
OCH2CH3
CH3
Ethyl acetate
I (Com.) Ethyl ethanoate
from acetic a'
from ethanoic a'
O
H
OCH3
(I)
Methyl methanoate
from mthanoic 'a
(Com.) Methyl formate from formic a'
O
O
OCH3
OH
O-CH3
Methyl salisylate
Methyl benzoate
76
O
O-C-CH3
O
CH2-O-C-CH3
(I)
Phenyl ethanoate
(Com.) Phenyl acetate
(I)
Benzyl ethanoate
(Com.) Benzyl acetate
O
CH3 O-CH=CH2
Vinyl acetate
4]Amides:
-oic acid or -ice a' by
–amide .f 1 or 2 subst.
on nitrogen we say N-subs. or N,N-disubs. (sub. Name 1st )
O
O
Or
NH2
R
Ar
O
NH2
CH3CH2
NH2
Propanamide
O
C-NH2
Benzamide
O
C-N
CH3
O
C-N
CH3
(I)
CH3
C2H5
N,N-Dimethyl benzamide
(I)
77
N,Ethyl-N-methyl benzamide
4] Acid anhydride:
replacing -acid with
O
anhydride
O
O
Ar C-O-C-R
R C-O-C-R
O
O
O
CH3 C-O-C-CH3
O
Ethanoic anhydride
O
(I) Propanoic anhydride
(C) Propionc anhydride
CH3CH2 C-O-C-CH2CH3
O
O
C-O-CZ
Benoic
anhydride
O
O
O
Succinic anhydride
R-CO-Cl > R-(CO)2O-R > RCO2R > RCO2H > RCONH2
Acid chloride
Acid anhydride
Ester
78
Acid
Amide
Reactions of acid derivatives:
a) Acid chlorides:
H2O/ H+
O
R-C-OH + HCl
R'OH
O
R-C-OR' + HCl
NH3
O
R-C-NH2 + HCl
R'NH2
O
R-C-NHR' + HCl
R'2NH
O
R'
R-C-N
+ HCl
R'
O
R-C-Cl
Reduction:
O
R
1) Li Al H4 / ether
Cl
2) H3O
79
R-CH2OH
B] Acid anhydride:
H2O/ H+
2
O
R-C-OH
acid
O
R-C-OR' + RCOOH
R'OH
O O
R-C-O-C-R
Ester
O
R-C-NH2 + RCOOH
NH3
Amid
R'NH2
O
R-C-NHR' + RCOOH
R'2NH
O
R'
R-C-N
+ RCOOH
R'
O
O
O
O
OH
R
O
CH3
R
CH3
CH3
COOH
COOH
+CH3-COOH
acetyl salisilic acid + acetc acid
Reduction:
O
O
R
O
R
1) Li Al H4 / ether
2) H3O
80
2 R-CH2OH
C] Esters:
H+
RCOOR' + H2O
RCOOR' + R''OH
RCOOH + R'OH
H+
RCOOR'' + R'OH
H+
RCOOR' + NH3
RCONH2+ R'OH
Reduction:
RCOOR'
1)Li Al H4 / ether
RCH2OH+ R'OH
2) H3O
CH3-CH2COOCH3 1)Li Al H4 / ether CH3CH2CH2OH+ CH3OH
2) H3O
R-C-OO-R'
OH
R-C-R''
R''
1) 2 R'' Mg X
2 ) H3O / H+
+ R' OH
d] Amid:
O
R-C-NH2 + H2O
O
R-C-NH2
O
R-C-OH + NH3
H+
NaOH / heat
O
R-C-ONa + NH3
Reduction:
O
R-C-NH2
1) Li Al H4 / Ether
2) H3O
O
R-C-NHR'
1) Li Al H4 / Ether
O
R'
R-C-N
R'
1) Li Al H4 / Ether
R-CH2NH2
R-CH2NHR'
2) H3O
2) H3O
81
R-CH2NR'2
dehydration:
O
R-C-NH2
P2O5
- H2O
R-CN nitrile
Hoffman degradation:
O
Br2/ NaOH
RCH2-C-NH2
or NaOBr
O
CH3-C-NH2
Br2/ NaOH
82
R-CH2NH2
CH3NH2
Amins
-Intermediate in organic chemistry reactions
-Amino acids (proteins DNA, RNA)
-Alkaloids and drugs
Structure and classification of Amines:
It is derived from ammonia by replacing 1,2 or three H
by alkyl or aryl gp.
-Aliphatic amines contain only alkyl gps. bonded directly to
nitrogen atom.
-Aromatic – one or more aryl gps. bonded to N.
Aliphatic amines
H
H
H
N
H
H
Ammonia
N
N
CH3
H
N
CH3 CH2-
CH3 CH3
H
Alphatic amines
Aromatic amines
H
H
N
N
H
CH3
-1 , 2 &3 or quaternary ammonium salt according to (R)
or (Aryl) gp attached to N atom.
H
N
H
R
R
H
R
N
N
R
R
83
R
R
R
N
R
R
Nomenclature of amines:
1] Simple aliphatic by alphabetical order to gp.
Attached to N and adding -amine
H
H
H
H
N
N
N CH3
CH
H
3
CH3 C2H5 CH3
Mathyl amine
ethylmethylamine
N
-CH2
CH3
dimethylamine
Benzylmethyla
mine
H
N
N
H5C2
Tri methyl amine
N
C2H5
Di ethyl amine
CH2CH2CH3
H5C2
C2H5
Diethyl isopropyl amine
C2H5
N
CH3 C2H5
N C H
2 5
C2H5
Triethylamine
Ethyl methyl propylamine
2] Complicated amine we consider (NH)as substituent & it's
position will take the lowest possible number.
NH2 CH3
CH3-CH2-CH-CH2CH-CH3 NH2CH2CH2CH2CH2CH2NH2
55
1,6-Diaminopentane(I)
pentamethylene diamine(C)
3-Amino-5-methylhexane
NH2-CH2-CH2-NH2
NH2CH2CH2OH
2-Amino ethanol
1,2-Diamino ethane(I)
Ethylene diamine
84
O
NH2CH2CH2CH2OH
NH2
5-Amino-2-hexanone
3-Amino-1-propanol
NH2
NH2
O
cyclo
2-Amino pentanone
Amino cyclohexane(I)
Cyclohexyl Amine(C)
3] Amine salt by replacing Amine by ammonium
CH3
CH3
N CH3
CH3
+
+
H
Cl
-
CH3
N C2H5
Br
-
H
Tetramethyl ammoinum chloride
Ethyl methylammoinum bromide
4]Aromatic amine
NH2
Aniline
NH2
NH2
NO2
OH
P-Nitroaniline
NHC2H5
N-Ethyl aniline
NHCH3
N-mthyl aniline
85
P-Aminophenol
P-Hydroxyaniline
C2H5
N-C2H5
N,N-Diethyl aniline
CH3
N-C2H5
NH-
N-Diphenyl aniline
N-ethyl-N-methyl aniline
N- Diphenyl amine
N-Phenyl aniline
Physical properties:
- Amines solutions are basic(ammonia or died fish odor)
- 1-3(methyl, dimethyl trimethy) are gases(aliphatic only)- 1 , 2 amine can form H bond So their MP > alkane of
similar M.Wt
(B.P
Alcohol> Amine > Alkane)
Basicity of amines:
-Amines basic because N has non bonded pair of electrons
which can be donated to an acids to form ammonium salt.
- base strength depend on the degree of substitution on N.
- More basic CH3-NH-CH3 > NH2-CH3 > NH3
- Active gps. Increase basic properties.
- Deactivating gps Decrease basic properties.
- RNH2 > ArNH2
aliphatic more basic than aromatic
-RCONH2 < Amide less basic amine
NH-CH3 NH2
NH2
NH2
NH2
NO2
NH2
NO2
NO2
OH
86
Preparation of amines:
1] Reduction of:
a) nitro compounds
RNO2
(H)
RNH2
CH3CH2NO2
NO2
H2/ Pt
CH3CH2NH2
NH2
(all HCl conc.)
H2/Pt or Sn/ HCl
or Fe/ HCl or Sn Cl2
NO2
H2/Pt or Sn/ HCl
or Fe/ HCl or Sn Cl2
CH3
b)Of Amide:
O
1)LiAl H4 / ether
R-C-NH2
2)H3O+
O
1)LiAl H4 / ether
R-C-NHR
2)H3O+
O
1)LiAl H4 / ether
R-C-NR2
2)H3O+
NH2
CH3
R-CH2-NH2
1 amine
R-CH2-NHR
2 amine
R-CH2-NR2
3 amine
b) Of Imines
R-C=NH2
R-C=NOH
R
1)LiAl H4 / ether
R-CH2-NH2
2)H3O+
d) Of Oxime:
1)LiAl H4 / ether
2)H3O+
87
R-CH-NH2
R
R-C=NOH
H2
R-C=N
1)LiAl H4 / ether
2)H3O+
R-CH2-NH2
e)Of nitriles
1)LiAl H4 / ether
2)H3O+
R-CH2-NH2
CH2CH2NH2
1)LiAl H4 / ether
2)H3O+
CH2CN
CH2COOH
H3O+, heat
1)LiAl H4 / ether
CH2NH2
2)H3O+
CN
COOH
H3O+, heat
CH2Br
1)LiAl H4 / ether RCH CH NH
2
2
2
2)H
O+
3
CH2CN
CH2COOH
NaCN
H3O+, heat
2] Alkylation of Ammonia
NH3 + RX
RNH3X
88
OH
RNH2
CH2CL
CH2NH-CH3
CH2NH2
CH3Cl excess
NaOH
NH3 +
+ HCl
CH2N-CH3
CH3
CH3Cl
CH3NHCH3 + HCl
CH3NH2 + CH23Cl NaOH
3] Hofmann degradation of amides
O
Br2/ NaOH
R-CH2NH2
RCH2-C-NH2
or NaOBr
O
Br2 / NaOH
CH2-C-NH2 + NaOBr
CH3-NH2 (methyl amine)
or KOH / Br2
+NaCO3+NaBr+
acetamide
H2O
O
CH2-C-NH2
CH2-NH2
+ NaOBr
Br2 / NaOH
or KOH / Br2
benzyl amine
phenyl acetamide
Reactions of amines:
1] With acid chloride
acid chloride react with 1 & 2 amine only(no 3 )
O
RNH2 + R'-C-Cl
O
R-C-NH-R'
NaOH
89
+HCl
O
NH-C-R
NH2
O
+ R-C-Cl
NaOH
+HCl
Acylation or amide formation
R'-NHR'
NH
O
NaOH
R-C-NR'2
O
C-CH3
O
N
+ CH3-C-Cl NaOH
O
+ R-C-Cl
O
C-CH3
N
H
O
+ CH3-C-Cl
90
N
NNCl
NAaNO2/ or NaNO2 +2HX
or NaNO2 +HX
or HNO2/ HX,0-5 C
N2Cl
or
diazonium salt
O
NH-C-CH3
+ CH3COOH
(CH3-CO)2O
NH2
acid anhydride
NH2
Br
or
R-NH2
or
Ar NH2
Br
Br2 / H2O
NH-CH3
Br
CH3 Cl / NaOH or (KOH)
(only with 1 and 2 amine)
+HCl
Alkylation
HCl
NH3Cl
salt formation
Reactions of Diazonium salt:
NNCl
NHCH3
N=N-
NaOH/H2O
NH-CH3
+ HCl
yellow azocompound
NNCl
CN
Cu2(CN)2
+ N2
91
NNCl
H3O+ / heat
or H2O /H+
OH
NNCl
NaNO2
NO2
NNCl
HBF4 / heat
F
NNCl
KI
I
NNCl
CH3OH
OCH3
NNCl
Cu2Br2
Br
+ N2
+ N2
+ N2
+ N2
+ N2 +H2O
+ N2
NNCl
H3PO2
NNCl
+ N2
OH
o
o C , NaOH
N=NOH
+HCl
92
93
Related documents