Download Subject: «MEDICAL BIOLOGY» - 2012. /13. Academic year

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Natural computing wikipedia , lookup

Transcript
University of Split
School of Medicine
Department of Medical Biology
Subject: «MEDICAL BIOLOGY» - 2012. /13. Academic year
Program: lectures (L=34 h), seminars (S=34 h) and practical courses (P=32 h).
1. CELL BIOLOGY AND MEDICINE. Molecular medicine.
L - Cell structure and function. Prokaryotes vs. Eukaryotes. Cell chemistry. Macromolecules.
S - Cell research methods. Stucture and ultrastructure.
P - Microscopy. Visual field size. Sample preparation/demonstration/. Sample slides
(prepared and wet-mount). (Microscopy room= M).
Slides:
1. arrow
2. cork cells
3. frog blood cells
2. Cell structure and function . THE NUCLEUS.
L - The nucleus. Central dogma of molecular biology.
S - Nucleus. Prokaryotic vs. Eukaryotic cell.
P - Nucleus in prokaryotes and eukaryotes. Cell size measurement (M).
Slides:
1. Prokaryotes: different types of bacteria
2. Eukaryotes: human tongue squamous cells
3. Cellular fragmentation and centrifugation: animal liver cells
3. MEMBRANE – STRUCTURE AND TRANSPORT.
L - Cell membrane structure. Plasma membrane transport principles.
S - Human erythrocytic membrane. Biological and artificial membrane transport.
P - Human erythrocytic membrane isolation and biochemical analysis (M).
Slides:
1. Human erythrocytes in physiological solution
2. Human erythrocytes in hypotonic solution: „white ghosts“
3. Human erythrocytic membrane: protein and lipid detection
4. Human haemoglobin crystals
4. PROTEIN SORTING AND TRANSPORT. BIOENERGETICS.
L - Intracellular membrane organelles. Generation of metabolic energy.
S - Endoplasmic reticulum, Golgi apparatus and lysosomes.
P - Membrane - transport. Mitochondria (M).
Slides:
1. Human erythrocytes in hypo-, iso- and hypertonic NaCl solution
2. Human erythrocytes in drinking and sea water
3. Onion cells: plasmolysis and deplasmolysis
4. Rat liver cells mitochondria
5. CYTOSKELETON AND CELL MOVEMENT.
L - Cytoskeleton and cell movement.
S - Microtubules, microfilaments and intermediate filaments.
P - Membrane, intracellular organelles and cytoskeleton (Computer room=CR).
6. The flow of genetic information. NUCLEIC ACIDS - DNA. Human genome.
L - Deoxyribonucleic acid - DNA.
S - DNA structure and replication.
P - DNA isolation. (M)
7. NUCLEIC ACIDS - RNA.
L – Ribonucleic acid - RNA. Transcription.
S - Molecular mechanisms of transcription in eukaryotes.
P - Methods of DNA analysis. DNA electrophoresis. (M).
8. DNA - RNA - Proteins.
L - From DNA to proteins. Translation. Genetic code.
S - Chromosome structure. Eukaryotic chromosome replication.
P - Human chromosome and sex chromatin. (M).
Slides:
1. Drosophilae melanogaster polytene chromosomes
2. Amphibian oocyte chromosomes
3. Human leucocyte chromosomes
4. Human buccal interphase cell sex chromatin
9. CELL REGULATION. CELL SIGNALING.
L - Intracellular signal transduction.
S – Fertilization and early embrionic development.
P - Gametogenesis, fertilization and early development (M).
Slides:
1. Rat ovaries, follicular maturation
2. Rat testis
3. Rat epididymis
4. Sea urchin fertilized oocytes and early stage organism
10. CELL CYCLE. CANCER. CANCER MOLECULAR GENETICS.
L - Cell cycle. Basics of molecular and cancer biology.
S - Cell cycle regulation in normal and transformed cells.
P - Tumors: teratomas and teratocarcinomas. (M).
Slides:
1. Rat embrio: 9 days old
2. Rat fetus: 20 days old
3. Rat fetus and placenta (fetus in toto)
4. Rat experimental teratoma
5. Human teratocarcinoma
11. MEDICAL GENETICS BASICS.
L – Classical and molecular genetics. Basic principles of medical genetics. Cell genomes and
genes.
S - Chromosomes and genes in meiosis. Principles of inheritance. Monohybrid inheritance.
Monogenetic disorders. Autosomal recessive and dominant disorders in human. Multiple
alleles. Problem solving.
P - Cell cycle. Interphase and mitosis. Mitotic index (M).
Slides:
1. Onion root cells
2. Yeast cells
3. Rat follicular ovarian cells
4. Human cervical cancer cells (HeLa)
12. X-LINKED INHERITANCE. LINKED GENES.
L - X-linked inheritance and inheritance of sex. Linked genes and gene recombination.
S - X-linked inheritance. Monogenic disorders. Haemophilia. Dihybrid cross. Independent
assortment. Problem solving.
P - PTC-test (Phenyl Thio Carbamide). Genealogy analysis. Problem solving (M).
13. DNA RECOMBINATION IN BACTERIA AND VIRUSES.
L – Prokaryotic and viral genomes. Transformation, conjugation i transduction. Recombinant
DNA.
S - DNA - RNA - PROTEIN. DNA, RNA and protein analysis methods.
P - DNA: PCR (Polymerase Chain Reaction) (M).
14. MUTATIONS.
L - Genomes, transcriptomes, proteomes. Molecular biology and future of medicine.
Recombinant therapy. Developmental genetics. Cloning. Ethics and genetics.
S - Control of gene expression in prokaryotes.
P - DNA: RFLP ( Restriction Fragment Length Polymorphism). Genealogy analysis (M).
15. CLINICAL CYTOGENETICS.
L - DNA repair mechanisms. Polygenic disease in human.
S - Karyotype. Chromosome banding methods.
P - Human karyotype and metaphase plate formation from leucocytes. Problem solving (M).
16. GENE EXPRESSION REGULATION.
L - Human karyotype and chromosomal aberrations.
S - Mutations and human health.
P – Gene regulation. DNA - RNA - Protein. Problem solving (CR).
17. MOLECULAR BIOLOGY IN MEDICINE. GENE THERAPY.
L – Gene cloning.
S – Genetic analysis in humans. Clinical genetics. Genetic counselling. Problem solving.
Teachers:
Prof. Tatijana Zemunik, MD, PhD
Asst. Prof. Vesna Boraska, PhD
Asst. Prof. Ozren Polašek, MD, PhD
Asst. Prof. Maja Barbalić, PhD
Ana Miljković, BSc.
Jolanda Zoković, lab.technician
Obligatory literature:
1. Cooper GM, Hausman RE. The Cell, a Molecular Approach. 5th ed. Washington
DC, Sunderland (Massachussets): ASM Press, Sinauer Associates; 2009.
Supplementary literature :
1. Cox TM, Sinclair J. Molecular biology in medicine. Blackwell Science, 1997. Oxford,
UK
2. Alberts B et. all. Essential Cell Biology, New York, Garland Science, 2/e, 2004.
3. Griffiths AJF et all. An Introduction to Genetic Analysis, 8/e, WH Freeman & Co.,
2005.
4. Gelehrter TD, Collins FS, Ginsburg D: Principles of Medical Genetics, 2nd ed.
Baltimore, Lippincott Williams and Wilkins, 1998.
5. Tamarin R H: Principles of Genetics, 6e, Boston, McGraw-Hill, 1999.
6. Reynolds A: CD-ROM Genetics - From Genes to Genomes, McGraw-Hill, 2000.
7. Gilbert SF. Developmental Biology, Sinauer, 8/e, 2006.
8. Peruzović M., Zemunik T.: Medicinska biologija, Priručnik za mikroskopske vježbe,
Katedra za medicinsku biologiju, Medicinski fakultet u Splitu, Split, 2010.
Subject aims: Understanding the basics of contemporary biological science on molecular
level, as per medical student's aspiration and future medical practice.
Subject goals: To demonstrate theoretical and practical knowledge of cell structure and
function, developmental biology, genetics and basic principles of molecular biology.
Subject components: Basics of molecular biology (DNA structure, replication, transcription
and translation), cell biology (cell structure and function, cell organelles, cell signalling, cellto-cell communication, cell cycle, apoptosys), developmental biology, genetics (fertilization
and early embrionic stage, teratogenesis, human genome, principles of inheritance, gene
mutations, population genetics, molecular biology of cancer cells, gene therapy).
Knowledge and skills that students have to obtain: microscopy of prepared and wet-mount
biological sample slides; cell analysis by fragmentation and centrifugation; plasma membrane
analysis: osmosis, plasmolysis, haemolysis, isolation and biochemical analysis; DNA
isolation and electrophoresis; performance of molecular biology methods: PCR and RFLP;
biomedicine database search.
Curriculum: All classes (lectures, seminars and practicals) are interconnected and attendance
to each is mandatory. Students are expected to be prepared for the class and to actively
participate in pre-assigned discussion topic.
Exams: Written exam at the end of the course (minimum of 60% is required for a positive
grade).
WINTER term
06. 03. 2013.
SUMMER term
2. 07. 2013.
AUTUMN term
05. 09. 2013.
19. 09. 2013.
Medical biology course starts in 31.1.2013. (timetable on www.mefst.hr and notice board).
Teachers of the Department for Medical Biology wishes all the students very successful
Medical studies at our School!
In Split, September 2012.
Prof. Tatijana Zemunik, MD, PhD
Chair of Department for Medical Biology