Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Trig/Math Anal HW NO. L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 Name_______________________No_____ SECTIONS ASSIGNMENT DUE √ Practice Set A Practice Set B Practice Set C Practice Set D Practice Set E Practice Set F Practice Set G Practice Set H Practice Set J California (Math Analysis) Standard(s): 3.0 Give proofs of various formulas by mathematical induction. 8.0 Understand the notion of limit of a sequence and limit of a function as the independent variable approaches a number or infinity. Determine whether certain sequences converge or diverge. Next Test Date: Practice Set A: Mathematical Induction Prove by induction. 1. 1 4 7 ... 3n 2 n 3n 1 2. 2 6 10... 4n 2 2n 2 3. 2 6 18...2 3n1 3n 1 Practice Set B: Mathematical Induction Prove by induction. 1. 21 16 ... n 21 n nn1 2. n3 3n 2 2n is 3 3. 5n 1 is 4 b g 2 b g b g 4. Expand 2 x y 5. Write the first four terms of x y Practice Set C: Mathematical Induction Prove by induction. n n 1 2n 1 2. 3 5 7... 2n 1 n n 2 5n 1 5 1. 12 2 2 ...n 2 3. 51 52 ...5n 6 4 3 2n 4. 3 1 is 4 5. n n is 3 5 14 b gb g b gb g Practice Set D: Limits Evaluate. 1. lim x 2 4 x 1 c h 4. lim x 4 478165373 Page 1 x 2 x4 x 2 16 x 4 x 4 2x 4 5. lim x 5x 2. lim x2 x 6 x 2 x2 4 4 3x 6. lim x 5 2 x 3. lim y3 8. lim 1 1 y 3 y 3 x3 8 x 2 x 2 4 Prove by induction. 7. lim 10. 13 23 ...n3 b g n2 n 1 4 2 Practice Set E: Limits Evaluate. x2 1 1. lim x 1 3x 3 1 1 4. lim 2 x x 1 x 1 x2 9x x 9 x 3 25 5x 5. lim x 5 1 25 x2 2 x 6x 8. lim x 2 x 2 10 b g 11. 12 32 ... 2n 1 2 x3 1 10. lim x 1 x 1 13. n 4 2n3 n 2 is 4 y 14. lim y 4 bg 4x bg 6. f x 6 x x 2 Practice Set G: Limits and Derivatives Find the limit. x4 1 x2 4x 4 1. lim 2. lim 2 x 1 x 1 x 2 x x 6 3 5x 2 7 5. lim 6. lim 2 x x 4 x 3x x 10. lim h 3. f x bg x4x2 5x 2 2 x x3 x9 13. lim x 9 x 3 h0 bg 5. f x 9. lim 2 4 9. lim x 5 x 1 2 x 25 5 x b3 hg 9 6. lim 2. f x x 3 1. f x 5x 2 3x 2 x x 25 12. 23n 1 is 7 4 n3 n 3 Practice Set F: Derivatives Find f '( x) 4. 3. lim 2. lim 7y 7. lim y 0 1 1 y Prove by induction. bg f bg x 1 1 9. lim 2 h 2 h 0 h x 2 6x 5 x 1 x 2 3x 4 x2 7. lim 2 x x 2 x 1 3. lim 2 y 7 6x5 x x 3 11. lim 7 6y2 4 y 2 y 15. lim x0 x3 3 x b g 7. Expand x h 4. lim x 6 3x 1 2x 5 3s 7 4s 5 s 2s 7 1 5 2t 3 12. lim 2 t t 1 8. lim 3 16. lim x radians) sin x (use x x 1 x 3 bg R S T3x 7 x 3 , find: x x x 17a. lim f bg 17b. lim f bg 17c. lim f bg x . If given, find the slope of the tangent line at the given point. Find f ' bg x 3x ; (3, 27) x x x ; (2, 2) x 2 x 1; (-1, -1) 18. f bg 19. f bg 20. f bg 1 1 x ax b 23. f bg 21. f bg x x 1 ; (8, 3) 22. f bg x x 24. f bg x x 1 If f x x 3 x 3 2 x 3 2 3 2 2 478165373 Page 2 Practice Set H: Review 1. Prove by induction: 32 n 1 is 8 Find: 5 x 5 x 2a. lim x 0 x 0 2 x 3x 2 I F G Hx 1 x J K 2c. lim 1 2e. lim 2 x x2 4 2f. lim x b g (use a table of 2d. lim 1 x 2b. lim 1 x x2 values) Find f '( x) : bg Practice Set J: Review Find: x 3 3x 2 x 3 10 x 2 3 1. lim 2. lim x 3 x 1 x3 1 x 2 x x 3 5. lim 6. lim 2 x 2 4 x 2 x 9 x 9 x 2 x 3 if x 2 Given: f x 2 , find: x if x 2 9a. x2 bg 13. f x 2 x 3 bg 9b. lim f x x2 Prove by induction. 10. n 4 2n3 n 2 is 4 Find f '( x) x3 1 x 1 x 1 3b. f x 6 3x 4 x 2 bg x 2 1 3a. f x bg R S T lim f bg x x0 3x 1 4 4 x 11. 22 n 1 is 3 bg 14. f x 4 x 1 3. lim x0 x 1 1 x 6 6 2 x 6x 2 x 2 x 2 10 7. lim bg 9c. lim f x x 2 8x 3 1 x 2 2 x 1 4. lim1 cx 1hb3x 4g lim 2 8. x 1 2 x 3x 2 9d. Is it continuous? bg bg b g nbn 1g6b2n 7g 12. 1 3 2 4 ...n n 2 bg 1x 15. f x bg 16. f x x 1 Practice Set K: Power Series 1. Write infinite series in expanded form for cos 4 and sin 4 . 2. Write infinite series in expanded form for e and e 1 . 3a. Substitute x 1 in the series for ln(1 x) to get an infinite series for ln 2 . b. Why can’t you substitute x 2 to get an infinite series for ln 3 ? 4. Substitute x 1 in the series for Tan 1 x to get an infinite series for a number involving . Find a power series for each function. State the interval of convergence in each case. 2 5. e x 7. Tan 1 2 x 6. e x 8. ln(1 x) 10. cos 2x 9. sin x 2 sin x 1. 11. Use the sine series to show that lim x 0 x 1 cos x . 12. Use the cosine series to find lim x 0 x2 ln(1 x) . 13. Use series (5) to find lim x 0 x 478165373 Page 3 14a. Use series (1), (2), and (3) to prove that ei cos i sin . b. Use part (a) to show that ei 1 and e2i 1 ei ei c. Use part (a) to show that cos 2 i e ei d. Use part (a) to show that sin 2i e. Show that the expressions for sin and cos given in part (c) and (d) satisfy the equation (sin )2 (cos )2 1 . Prove by induction. n n(n 1)(n 2) 16. n(n2 5) is by 6 15. i (i 1) 3 i 1 Determine whether each function is continuous. If it is discontinuous, state where any discontinuities occur. 2 x 2 if x 1 x 2 +1 if x 0 17. f ( x) 18. f ( x) 2 x if x 0 x if x 1 x 1 x2 4 20. f ( x) if x 2 1 x 19. f ( x) x 2 4 if x 2 Determine values for a and b so that each function is continuous. x 2 if x 1 1 2 x if x 2 22. f ( x) ax b if 2 x 1 21. f ( x) ax b if 1 x 1 3x 2 if x 1 x 2 if x 1 ANSWERS Practice Set B 4. 32 x5 80 x 4 y 80 x3 y 2 40 x 2 y3 10 xy 4 y 5 5. x14 14 x13 y 91x12 y 2 364 x11 y 3 ... Practice Set D 1. 5 2. -8 3. 1.25 4. .25 5. .4 6. 1.5 7. -3 8. -9 9. -.25 Practice Set E 2. 54 3. -10 4. ½ 5. -12.5 6. 6 7. -14 8. -3 9. 0 10. 3 1. 23 Practice Set F 1. 10x 3 4 1 4. 2 x 2 x 6 5 4 2 3 3 2 4 5 5 7. x 6 x h 15 x h 20 x h 15 x h 6 xh h Practice Set G 1. 4 2. 0 3. -4/5 4. 3/2 5. 0 6. 5/3 7. 0 11. 12. 13. 6 14. 4 15. 17c. 2 22. x23 18. 6x; 18 23. 2ax 19. 2x-1; 3 24. bx 11g2 2. 3x 2 10. 1 6 9. 5 17a. 2 17b. 2 1 21. 2 x1 ; 1/6 478165373 Page 4 3. 6. 6 2x 5. bx82 g2 1 2 3 20. 6 x 2 ; 6 8. 3 3 2 16. 0 Practice Set H 2b. -1 2a. 105 2d. 2c. 48 2e. -.25 Practice Set J 1. 8 2. 1/3 3. -36 4. 3 9a. 1 9b. 4 9c. limit does not exist 5. ¼ 9d. no 3a. bx21g2 2f. 3 3b. 3 8x 6. 1/54 7. -3 2 14. 4 15. x12 13. 6x 8. 16. 2 1 x1 Practice Set K 2 4 6 3 5 7 1. cos 4 1 42 2! 44 4! 46 6! ...;sin 4 41! 43 3! 45 5! 47 7! ... 2. e 1 1!1 2!1 3!1 ...; e1 1 1!1 2!1 3!1 ... 3b. x 2 is not in the interval of convergence 3a. 1 12 13 14 ... 4. 4 1 13 15 71 ... 5. 1 1!x x2! x3! ..., all real x 2 7. 2 x 6. 1 x1! x2! x3! ..., all real x 2 4 6 8. x x2 x3 x4 ..., 1 x 1 2 3 4 9. x 2 12. ½ 10. 1 2! 4! 6! ..., all real x 17. cont. 18. disc. at x=0 19. cont. 2x 2 2x 4 2x 6 Power Series (1) e x 1 1!x x2! x3! ... xn! , for all real x 3 n n 0 (2) cos x 1 x2! x4! x6! ... ( (21) n )!x , for all real x 2 4 6 n 2n n 0 (3) sin x x x3! x5! x7! ... ( (21)n x1)! , for all real x 3 5 7 n 2 n1 n 0 (4) Tan 1 x x x3 x5 x7 ... ( 1)2 n x1 , 1 x 1 3 5 7 n 2 n1 n 0 (5) ln(1 x) x x2 x3 x4 ... ( 1)n 2 3 4 n 1 478165373 Page 5 3 x 2 3 3! 20. disc. at x=1 The Derivative of a Function f ( x h) f ( x ) f '( x) lim h 0 h 2 2 x 3 n1 n x , 1 x 1 3 2 x 5 5 x 2 5 5! 2 x 7 7 x 2 7 7! ..., 12 x 12 ..., all real x 13. 1 21. a=-1, b=0 22. a=0,b=5