Download p301 #`s 1-4 all, 7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
HONORS CALCULUS
Final Exam Review (Page 1)
1. Find: lim
x 0
NAME__________________________
f  x  x   f  x 
x
2. Find the natural domain of :
if
f  x 
f  x  x 2  1
2x 2  x  3
x 2  3x  2
3 , x  0

3. Graph the function : f  x   2 x , 0  x  4
2 x  10 , x  4

4. . Graph the following and find the range and the zeros of each:
f(x) = x 2 - 4x + 2
[ - 1, 3 ]
a. range: ___________________
zeros: ___________________
5. Evaluate each limit
x
a. lim
x  0 sin 7 x
x  5 x  3

b. lim f ( x)  6 x  3
x 3
2 x x  3

c.
x 2
d. lim
x 2
e.
f.
( y  1)( y  2)
y 1
lim
lim
x2  4x  4
x2  x  6
x 
3
y4
4 x
x 4 2 
x
h. lim
i.
6  x3
lim 3
x  7 x  3
j.
lim
x
3
sin x
2 cos 2 x
tan 4 x
x 0
2x
k. lim
5x2  7
x  3 x 2  x
lim
x
g. lim 2
x2 x  4

l.
3
4

lim 4 4  x
x 0
x
6. Find an equation of the tangent line to the graph of f ( x)   x 3  3x  1  x  2  at
the point ( 1, -3 )
7.
8.
f ( x)  3x3  4 x 2  1 find f ''( 2)
Find the equation of the line normal to the curve y = 2 x 2  3x  1 at the point
on the curve where x = 1.
HONORS CALCULUS
Final Exam Review (Page 2)
NAME__________________________
9. Determine whether the following functions are continuous or discontinuous. If
the function is discontinuous, determine the point(s) of discontinuity and state if
the discontinuity is removable or non-removable.
2 x 2  5 x  12
a. f ( x) 
3x  12
3x  6
x  3x  2
b.
f ( x) 
c.
2 x  1 x  3
f ( x)   2
 x 1 x  3
d.
f ( x)  cos x  4
2
10. Find the derivative of each function.
a.
b.
c.
1
f ( x)  x 2  cos x
2
f ( x) 
x3  3x 2  4
x2
d.
f ( x) 
e.
f ( x)  2sin x  3cos x
2
3x 2
2

f ( x)  3x  x 2  
x

11. A ball is thrown straight down from the top of a 220 foot building with an initial
velocity of -22 feet per second. What is its velocity after 3 seconds? What is its
velocity after falling 108 feet?
12. A projectile is shot upward from the earth’s surface with an initial velocity of 384
feet per second. What is its velocity after 5 seconds? After 10 seconds? What is
the maximum height the object can reach?
13. Identify all intercepts, find any asymptotes, and sketch the graph
x2
a. f ( x)  2
x 9
x3
b. g ( x)  2
2x  8
3
2
14. f  x   x  ax  bx  c 

f  2  1


f '  3  49


f ''  3  24

Find f  7 
Related documents