Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Getting Warmed Up Worksheet KEY Name ______________________ Worksheet Getting Warmed Up Practice with Powers Directions: Compute and simplify each expression completely. Show work using the correct mathematical or algebraic methods.) DO NOT USE A CALCULATOR!!!! You must get rid of negative exponents in your final answers!! 2 1 4 1. (81) = (3)2 4. 5x 3 7. 32 3 5 3 = 2 1 8 72a3b3 5 3 2a b 1 1 2 3 3 = 5 x 5 y 9 5. 15 x 6 y 5 15x 5 z 3 10. 4 4 25x yz 12. =9 y 2 z 2 2 x 1 y 2 z 7 = 10z x4 4b 4 2. 8a 3 1 2 = 2x 3 y 2 = 36a b = 13. = 2 4 3 1 81x 4 y 8 = 2 125x5 y15 1 ab 3 6 3xy 2 5 6. 2 x 5 x y 3x 9 z 7 5y 5 x9 yz 7 9 7 = 3 3x z 5y 1 6 2 3. y8 = 3x 4x y 8. 2 5 x y 8 8a 3 2a 4 b12 b 2a 9. 256 3 4 3 = 4 1 64 2 6 9 12 11. 64x y z 3 = 16 x 4 y 6 z 8 6a 4 2 3 b = 2 3 2 b 16 y 6 x4 z8 a12 36b6 g 8b6 a 4 = 9a 8 2 VIP, “Very Important Problem(s)” Extending some ideas: 14. e x ge x = e2x x x 15. 3 g3 = 30 1 16. ex 1 gex 1 = e2 x 1 2x2 or e anything to the 0 power = 1 17. Since ab a 2b 2 , some people believe that the property extends to a b a 2 b 2 . Show that this assumption is incorrect. 2 ab ab ab a 2b2 using the definition of squaring and the product of powers property while 2 a b 2 2 a b a b a 2 2ab b 2 There is no power of a sum property! Also, no distributive property for exponents!! Simply expand. S. Stirling 2015 Page 1 of 10 Getting Warmed Up Worksheet KEY Name ______________________ Radicals On #1 – 15, compute and completely simplify each expression completely. 1. 43 12 75 2. 3 8 5 24 3 6. 3 53 3 2 3 375 3 3 25 3 30 3 3 3 4 5 5 5 6 5 6 3 25 7. 4 4 5 3 3 3 8. 2 10. 8 2 3 15 3 5 2 3 2 12 2 62 6 2 6 4 3 2 14 3 3 2 2 6 10 4 6 13. VIP On #16 – 18, multiply by the conjugate so that you may evaluate each expression. Follow the example below. 34 32 3 2 3 4 3 8 5 2 3 16. Evaluate at x = 4. Ex: Evaluate x 9 at x = 9. 3 x 99 0 You can’t. 3 9 0 So multiply by the conjugate 3 x 3 x 3 x x 9 3 x = x 9 9 x = x 9 3 x x 9 = 3 x Now evaluate. 3 9 6 Neat trick huh?! S. Stirling 2015 1 x5 3 At x = 4: 1 1 45 3 6 2 12. 6 6 18 2 2 15. 18 2 3 2 3 x x2 x 17. Evaluate at x = 0. 18. Evaluate at x = 0. x2 2 x x 1 12 3 2 4 2 2 10 2 x2 2 x x22 x 5 3 x 5 3 x4 x5 3 x 59 x5 3 62 14. 3 2 4 2 x5 3 x4 x 4 4 6 18 3 6 3 2 2 2 3 3 32 32 4 16 2 2 11. 3 16 3 9. 4 8 3 5 27 5 2 2 3 12 48 4. 6 15 8 8 3 120 3 3 25 30 5. 5 3 50 3. x x2 2 x x4 2 x x 4 2 x2 2 x2 2 x x4 2 x 4 2 x42 x44 1 x2 2 x42 At x = 0: 1 1 02 2 2 2 No need to rationalize. At x = 0: 04 2 4 Page 2 of 10 Getting Warmed Up Worksheet KEY Name ______________________ Polynomials, Factoring and Zeros of Functions No decimal answers!! Use the factoring flowchart on page 5 of “General Concepts” for help. 1. Write in standard form x 4 2 = (x – 4) (x – 4) = x2 – 8x + 16 8. Write in standard form x 3 3 = (x + 3) (x2 + 6x + 9) = x3 + 6x2 + 9x + 3x2 +18x + 27 = x3 + 9x2 + 27x + 27 2 2. Factor 40 x 80 5 x = –5(x2 + 8x + 16) always take out GCF 1st! = –5(x + 4)2 3 2 4 3. Factor 13x 2 x 15 x = –x2(15x2 – 13x – 2) = –x2(x – 1)(15x + 2) 3 2 9. Factor 8 x 18 x 4 x 9 = 2x(4x2 – 9) + 1(4x2 – 9) = (2x + 1)(4x2 – 9) = (2x + 1)(2x – 3)(2x + 3) 2 2 10. Factor x y 25 y 3x 75 x y 25 y 3x 75 y x 25 3 x 25 2 3 4. Find zeros of f ( x) x 27 = (x + 3)(x2 – 3x + 9) x x = – 3 or 2 2 2 y 3 x 5 x 5 3 (3) 4(1)(9) 2(1) 2 3 27 So only 1 real solution. x 2 4 3 2 11. Factor f ( x) 2 x 11x x 23x 15 Must use the Rational Root Theorem. 2 11 1 (2x – 5) (4x2 + 10x + 25) 2 9 2 3 5. Factor completely 8 x 125 = –2(4x2 – 20x + 25) recognize perfect squares! = –2(2x – 5) 2 9 23 15 8 15 8 15 0 ( x 1)(2 x3 9 x 2 8x 15) 2 2 6. Factor 8 x 40 x 50 1 1 2 9 8 15 2 7 15 7 15 0 ( x 1)2 (2 x 2 7 x 15) ( x 1)2 (2 x 3)( x 5) 3 2 7. Factor 16 x 56 x 49 x = –x(16x2 – 56x + 49) KNOW long and synthetic division WELL! recognize perfect squares! = –x(4x – 7)2 S. Stirling 2015 Page 3 of 10 Getting Warmed Up Worksheet KEY Long Division and Synthetic Division 1. Divide x3 3x 2 5 x 3 Name ______________________ Practice both techniques on each of the following. 2. Divide 18 x 3x3 9 6 x 2 3 3x x 2 3x 3 3 x 3 3 x 3 6 x 2 18 x 9 x2 x 3 x3 3x 2 5 3 x 3 3 x 2 x3 3x 2 9x 2 18 x 5 x2 Write the answer: 5 x3 1 1 3 0 5 3 0 0 0 0 5 9x 9 9x 9 0 x 3 0 , x 3 now For synthetic, find the root: 3 9 x2 9 x For synthetic, find root: 1 3 3 5 Answer: x x3 3x 3 0 , x 1 now 6 18 9 3 9 9 9 9 0 2 So: 3 x 2 9 x 9 , factored 3 x 2 3 x 3 But the threes would divide out, so answer 3. Divide x3 20 x 3 4. Rewrite x 2 3x 9 x 3 x 3 20 x 3x 3 x2 in an equivalent form. x 1 x 1 x 1 x2 2 3 x 2 20 x2 x 3x2 9 x x 9 x 20 x 1 9 x 27 1 7 Answer: x 2 3x 9 Answer: 7 x 3 3 1 1 1 0 0 20 3 9 27 3 9 7 S. Stirling 2015 x 1 1 x 1 With synthetic: With synthetic: 1 0 0 1 1 same answer! x 2 3x 3 . same answer! 1 1 1 Page 4 of 10 Getting Warmed Up Worksheet KEY Name ______________________ Simplify Rational Expressions I. Simplify completely, if possible. x 2 3x x 1. x x 3 x x3 or 2. x x x 1 x 2 3x x x x3 1 x 1 This IS the distributive property of division over subtraction. 5x x 2 8 x 15 x 1 x 5 x3 5. 7 x x 5 x 7 x 3 x2 2 x 3 x2 6 x 9 x 2 2 x 3 ( x 3)( x 1) = = x 2 6 x 9 ( x 3)( x 3) ( x 1) ( x 3) 3. This is NOT the distributive property! 4 x 5 x 2 3x 4. 1 x 2 x 2 x x = 2 ( x 3)( x 5) x 1 = x 1 x5 x3 or in factored form x3 x 2 5 x 3 6. x3 3x 2 3 2 Num. x x 5 x 3 1 x 5x 7 2 3 x 2 x 2x 8 ( x 3) = ( x 2)( x 4) 3 1 2 3 1 2 3 0 x 1 x 2 2 x 3 x 1 x 1 x 3 This IS the distributive property of division over subtraction. 7. 1 1 5 x2 2 x 1 = x3 1 ( x 1)( x 1) = ( x 1)( x 2 x 1) ( x 1) 2 ( x x 1) 8. 3 Denom. x 3 x 2 1 0 3 1 2 1 2 1 1 2 0 1 x 1 x 2 x 2 x 1 x 1 x 2 So 3x 2 3x 2 9. x 1 x 1 = 3x3 3x 2 3x3 3x 2 = ( x 1)( x 1) 6 x2 x2 1 S. Stirling 2015 10. x3 x x 1 x x 1 x 1 x 1 x3 x 2 5 x 3 x3 3x 2 x3 ( x 1)( x 3)( x 1) = = ( x 1)( x 2)( x 1) x 2 x x 1 Page 5 of 10 Getting Warmed Up Worksheet KEY 4a 2b 8b3t 2 11. 3st 15a = 12. Name ______________________ k k2 x2 4 x 2 13. k x2 = = ( x 2)( x 2) k 2 4a 2 b 15a 5a 3 = 3st 8b3t 2 2b 2 st 3 = = 7 2 3 2 5x 3x 21x 10 15 x 3 = x x 10 5 x 2 x 10 2 16. = = 6x 3 3 2 3(2 x 1) 6 x x 4 1 x 4x x 4 15. 2 4 x = x( x 4) x( x 4) x4 x( x 4) 17. 2x 3 3 2 x 25 5 x 2x 3 3( x 5) = ( x 5)( x 5) ( x 5)( x 5) 2 x 3 3x 15 = x 12 ( x 5)( x 5) ( x 5)( x 5) 19. = 4 x 5 6 1 3 x 5 3 x 5 (4n 1)(n 5) (n 5)(2n 4) = (n 5)(n 5) (n 5)(n 5) 4n 2 21n 5 2n 2 6n 20 = (n 5)(n 5) 2n 2 27 n 25 (n 5)(n 5) 4 x ( x 4) 8 10 = 2 x 16 10 x 4 x 4 8 S. Stirling 2015 = 20. 4 x 5 3 x 5 12 4 5 x 5 5 5 3 x 5 x x 10 6(2 x 1) 4n 1 2n 4 n5 n5 4 5 x 2 1 5 x 3x 15 = 18. 2x 3 3 = = ( x 5)( x 5) ( x 5) ( x 6)( x 5) = 4( x 5)( x 5) ( x 6) 4( x 5) 1 k ( x 2) 14. x 2 11x 30 100 4 x 2 = 1 4 4 5 ( x 4) 5 x 20 Page 6 of 10 Getting Warmed Up Worksheet KEY Name ______________________ II. Simplify completely, if possible. 4 2( x 3) 4 2 x 2 9 x 3 x 3 x 3 1. 1 1 = x 3 x 3 x 3 x 3 x 3 x 3 = x 3 x 3 4 2x 6 2x x 3 x 3 2 x 10 2 x 5 x 5 2x 2x x VIP! 3a. “Very Important Procedure” 3b. 5. 1 2 4 x2 4x 2 x 1 5 2 x 1 x 1 x 1 2 2 2 x2 2x x 2 1 2 x2 2 x 2 x 1 2 2 4. Simplify by factoring: 2 x 4 1 12 x 4 5x 2 2 1 4 5x2 1 2x 2 4 5x2 1 1 1 x 3 16 x 2 2 x 16 x 2 2 2 1 1 1 x 16 x 2 2 x 2 2 16 x 2 2 x 3 x 2 32 1 2 16 x 2 2 S. Stirling 2015 x 1 2x2 4x 2 2 Simplify by factoring 1 1 1 21 x 16 x 2 2 2 x x 16 x 2 2 2 2 2 16 x 2 2x2 2x x2 2 3 1 12 x 4 x 2 6x2 2 3 3 4 1 12 1 1 x 4 x 2 x 2 6 x 2 2 x 3x 2 2 2 x 3 x 2 32 2 See page 8 of the “General Concepts” notes. Multiply (use fractional exponents) x 4 x2 x x 1 2 x x 2 2 x 1 2 2. 2x 6. 1 2 2 Simplify by factoring 1 1 1 x 1 x x 2 2 1 2 1 x 1 x 1 1 2 2 x 12 x 12 1 x 1 2 2 x x 12 2 x x 3 3 2 x 1 2 x 1 Page 7 of 10 5 3 x 2 2 Getting Warmed Up Worksheet KEY Solving Equations Name ______________________ No decimal answers!! Simplify all answers completely! Exclude imaginary roots! 1. Solve 5 x 3 x 5. Solve by completing the square 2 x 2 10 x 13 5x2 x 3 0 x 2 10 x 25 13 25 1 12 4(5)(3) x 2(5) x x 5 2 12 x 5 12 1 61 10 x 5 2 3 2. Solve x3 5 x 3x 2 15 x 3 3x 2 5 x 15 0 x 2 x 3 5 x 3 0 x 2 5 x 3 0 x 5 or x 3 WRONG! x x 2 5 3 x 2 5 x3 You lost two roots! 3. Solve 0 x 5 x 3 20 x 0 x x 4 x 2 20 0 x x 2 5 x 2 4 x0 0 x2 4 0 x2 5 x 2 x i 5 5x 10 x 3 2x 6 5x 10 6( x 3) ( x 3) ( x 3) ( x 3) 2( x 3) 6. Solve 6 6 x 18 5x 5 11x 23 23 x 2.09 11 Eliminate the imaginary. Calculus only deals with real numbers. 4. Solve 2 1 x2 x x 1 x2 – x = 2x – 2 Used cross multiplication. x2 – 3x + 2 = 0 (x – 2)(x – 1) = 0 x = 2 or x = 1 only 2, since 1 is not in the domain. S. Stirling 2015 Page 8 of 10 Getting Warmed Up Worksheet KEY 2 x 6 x 3 7. Solve 2 x 6 x 3 Name ______________________ 9. 2 2 Don’t divide out the (x + 3)! But can divide out the 2. x x 2 6 x 9 2( x 3) 2 x 6 x 2 6 x 9 0 x 2 8 x 15 x3 6 x 2 9 x 2 x 6 0 x 3 x 5 x3 6 x 2 7 x 6 0 x = –3 or –5 Check because could gain a root 2 3 6 3 3 Solve 2 x x 3 4( x 3) Now rational root theorem: 2 5 6 5 3 00 3 1 2 2 So x = –3 is the only solution. 1 7 6 3 9 6 2 0 6 3 ( x 3)( x 2 3x 2) 0 8. Solve 0 a bc 7 4a 2b c 10 4a b 3 32 4(1)(2) x 3 or x 2(1) x 3 17 2 Used the elimination method, but could have used substitution. 7 4a 2b c 0 a b c 7 3a b 10 4a b 7 3a b 3a 10 4 3 b 2 b 0 3 2 c 1 c 3 2 10. Solve 6 x 60 36 x 10 x Again, need to get = 0. 6x3 – 36x2 + 10x – 60 = 0 2 [3x3 – 18x2 + 5x – 30] = 0 2 [3x2(x – 6) + 5(x – 6)] = 0 2 [(3x2 + 5)(x – 6)] = 0 2(3x2 + 5)(x – 6) = 0 So x 5 and x = 6 3 Square root of negative extraneous. Eliminate the imaginary. Calculus only deals with real numbers. Only solution is x = 6. a = 3, b = –2, c = –1 S. Stirling 2015 Page 9 of 10 Getting Warmed Up Worksheet KEY Name ______________________ Some Miscellaneous Things to Think About 1. Find f ( x x) f ( x) , if f ( x) 3x 2 . x 2. Find Use composition 3( x x) 2 3 x 2 x 3 x 3x 2 3 x 2 x 3x 3 x f ( x h) f ( x ) , if f ( x) x 2 4 x . h Use composition ( x h) 2 4( x h) x 2 4 x h x 2 xh h 4 x 4h x 2 4 x h 2 2 xh h 4h h h 2x h 4 2x h 4 h 2x h 4 2 2 On # 3 – 6, you may want to simplify the expression before evaluating! 3. Evaluate for a = 0. b a 2 b 4. 2 a b 2 2ab a 2 b 2 a a 2b a a 2b a Evaluate for x = 4. x 2 x4 x 2 x 2 x 2 1 x 2 Now if x = 4 1 1 42 4 Now if a = 0 2b 0 2b 5. Evaluate for x = 0 1 1 x4 4 x 4 x 4 4 x 4 x x 1 4 x 4 x 1 4 x 4 So 1 1 4 0 4 16 6. Evaluate for x = 0. Hint: multiply numerator and denominator by the conjugate. x x 1 x 1 1 x x x 1 x 1 x x 1 x 1 x x 1 x 1 x x x 1 x 1 x x x x 1 x 1 x x x 1 x 1 S. Stirling 2015 x x 1 x 1 For x=0 1 x 0 1 x 1 1 2 x 1 Page 10 of 10