Download WS Getting Warmed Up Key

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Getting Warmed Up Worksheet KEY
Name ______________________
Worksheet Getting Warmed Up
Practice with Powers
Directions: Compute and simplify each expression completely. Show work using the correct mathematical or
algebraic methods.) DO NOT USE A CALCULATOR!!!! You must get rid of negative exponents in
your final answers!!
2
1


4
1. (81)  = (3)2


4.
 5x
3
7. 32

3
5
3
= 2 
1
8
 72a3b3 

5 3 
 2a b 

1
1
2
3
3
=
5 x 5 y 9
5.
15 x 6 y
5
 15x 5 z 3 
10. 
4
4 
 25x yz 
12.
=9
y 2 z 2  2 x 1 y 2 z 7  =
10z
x4

 4b 4 

2. 
 8a 
3
1
2
=
2x 3
y
2
=  36a b
 =
13.
=


2 4
3
1
81x 4 y 8
=
2
125x5 y15
1
ab 3
6
 3xy 
2 5
6. 2 x 5 x y
 3x 9 z 7 
5y
5 x9 yz 7
  9 7 
= 
3
3x z
 5y 
1
6  2
3.
y8
= 3x
 4x y 
8. 
2 5 
 x y 
8
8a 3
 2a 

 4
b12
b 
 2a
9. 256

3
4
3
= 4 
1
64
2
6 9 12
11.  64x y z  3 =
16 x 4 y 6 z 8 
  6a
4 2 3
b
=
2 3 2
b
16 y 6
x4 z8
a12 36b6
g
8b6 a 4
=

9a 8
2
VIP, “Very Important Problem(s)” Extending some ideas:
14.
e x ge x
=
e2x
x
x
15. 3 g3
=
30  1
16.
ex 1 gex 1 = e2 x 1
2x2
or e
anything to the 0 power = 1
17. Since  ab   a 2b 2 , some people believe that the property extends to  a  b   a 2  b 2 . Show that
this assumption is incorrect.
2
 ab    ab  ab   a 2b2 using the definition of squaring and the product of powers property while
2
a  b
2
2
  a  b  a  b   a 2  2ab  b 2 There is no power of a sum property! Also, no distributive
property for exponents!! Simply expand.
S. Stirling 2015
Page 1 of 10
Getting Warmed Up Worksheet KEY
Name ______________________
Radicals On #1 – 15, compute and completely simplify each expression completely.
1.
43
12


75


2. 3 8  5 24 
3
6.
3
53 3
2
3  375 3
3
25  3 30
3
3
3
4
5 5 5 6 5 6
3

25
7.
4

4

5 3
3
3
8.
2
10.
8 2  3  15 3  5 2
3 2  12 2
62 6 2 6 4
3 2  14 3
3 2 2 6
10  4 6
13.
VIP On #16 – 18, multiply
by the conjugate so that you
may evaluate each
expression. Follow the
example below.

34

32

3 2 3  4 3 8
5  2 3
16. Evaluate at x = 4.
Ex:
Evaluate
x 9
at x = 9.
3 x
99 0
 You can’t.
3 9 0
So multiply by the conjugate
3  x 
3  x  3  x 
 x  9 3  x 
=
 x  9

9 x
=  x  9 3  x 
  x  9
= 3  x
Now evaluate. 3  9  6
Neat trick huh?!
S. Stirling 2015
1
x5 3
At x = 4:
1
1

45 3 6

2
12.
6
6  18
2

2
15.
18
2
 3 2 3
x
x2  x
17. Evaluate at x = 0.
18. Evaluate at x = 0.
x2  2
x

x 1
12  3 2  4 2  2
10  2
x2  2
x
x22
x 5 3 x 5 3
x4
x5 3
x 59
x5 3
62
14.  3  2  4  2 
x5 3
x4
 x  4 

4
6  18
3
6 3 2

 2 2
3
3
32
32 4
 16  2
2
11.
3
16 3
9.  4 8  3   5 27  5 2 
2 3  12
48
4.
6
15 8 8 3  120 3
3 25  30
5.  5 3 
50
3.
x

x2 2
x
x4 2


x  x  4  2
x2  2
x2 2
x

x4 2


x  4  2
x42
x44
1
x2  2
x42
At x = 0:
1
1

02  2 2 2
No need to rationalize.
At x = 0:
04 2  4
Page 2 of 10
Getting Warmed Up Worksheet KEY
Name ______________________
Polynomials, Factoring and Zeros of Functions
No decimal answers!! Use the factoring
flowchart on page 5 of “General Concepts” for help.
1. Write in standard form  x  4 
2
= (x – 4) (x – 4)
= x2 – 8x + 16
8. Write in standard form  x  3
3
= (x + 3) (x2 + 6x + 9)
= x3 + 6x2 + 9x + 3x2 +18x + 27
= x3 + 9x2 + 27x + 27
2
2. Factor 40 x  80  5 x
= –5(x2 + 8x + 16) always take out GCF 1st!
= –5(x + 4)2
3
2
4
3. Factor 13x  2 x  15 x
= –x2(15x2 – 13x – 2)
= –x2(x – 1)(15x + 2)
3
2
9. Factor 8 x  18 x  4 x  9
= 2x(4x2 – 9) + 1(4x2 – 9)
= (2x + 1)(4x2 – 9)
= (2x + 1)(2x – 3)(2x + 3)
2
2
10. Factor x y  25 y  3x  75
 x y  25 y    3x  75
y  x  25   3  x  25 
2
3
4. Find zeros of f ( x)  x  27
= (x + 3)(x2 – 3x + 9)
x
x = – 3 or
2
2
2
 y  3 x  5 x  5
3  (3)  4(1)(9)
2(1)
2
3  27 So only 1 real solution.
x
2
4
3
2
11. Factor f ( x)  2 x  11x  x  23x  15
Must use the Rational Root Theorem.
2 11
1
(2x – 5) (4x2 + 10x + 25)
2 9
2
3
5. Factor completely 8 x  125
= –2(4x2 – 20x + 25) recognize perfect squares!
= –2(2x – 5) 2
9
23 15
8
15
8 15
0
( x  1)(2 x3  9 x 2  8x  15)
2
2
6. Factor 8 x  40 x  50
1
1
2
9
8
15
2
7
15
7
15
0
( x  1)2 (2 x 2  7 x  15)
( x  1)2 (2 x  3)( x  5)
3
2
7. Factor 16 x  56 x  49 x
= –x(16x2 – 56x + 49)
KNOW long and synthetic division WELL!
recognize perfect squares!
= –x(4x – 7)2
S. Stirling 2015
Page 3 of 10
Getting Warmed Up Worksheet KEY
Long Division and Synthetic Division
1.
Divide  x3  3x 2  5    x  3
Name ______________________
Practice both techniques on each of the following.
2. Divide  18 x  3x3  9  6 x 2    3  3x 
x 2  3x  3
3 x  3 3 x 3  6 x 2  18 x  9
x2
x  3 x3  3x 2  5
3 x 3  3 x 2
 x3  3x 2
9x 2  18 x
5
x2 
Write the answer:
5
x3
1
1
3
0
5
3
0
0
0
0
5
 9x  9
9x  9
0
x  3  0 , x  3 now
For synthetic, find the root:
3
 9 x2  9 x
For synthetic, find root:
1
3
3
5
Answer: x 
x3
3x  3  0 , x  1 now
6
18
9
3
9
9
9
9
0
2
So:
3 x 2  9 x  9 , factored 3  x 2  3 x  3
But the threes would divide out, so answer
3. Divide  x3  20    x  3
4. Rewrite
x 2  3x  9
x  3 x 3  20
 x  3x
3
x2
in an equivalent form.
x 1
x 1
x 1 x2
2
3 x 2  20
 x2  x
 3x2  9 x
x
9 x  20
 x 1
 9 x  27
1
7
Answer:
x 2  3x  9 
Answer:
7
x 3
3
1
1
1
0
0
20
3
9
27
3
9
7
S. Stirling 2015
x 1
1
x 1
With synthetic:
With synthetic:
1 0 0
1 1
same answer!
x 2  3x  3 .
same answer!
1 1 1
Page 4 of 10
Getting Warmed Up Worksheet KEY
Name ______________________
Simplify Rational Expressions
I. Simplify completely, if possible.
x 2  3x
x
1.
x  x  3
x
x3
or
2.
x
x  x  1
x 2 3x

x
x
x3
1
x 1
This IS the distributive property of
division over subtraction.
 5x
x 2  8 x  15 x  1

x 5
x3
5.
 7 x   x  5 x  7 x
3
x2  2 x  3
x2  6 x  9
x 2  2 x  3 ( x  3)( x  1)
=
=
x 2  6 x  9 ( x  3)( x  3)
( x  1)
( x  3)
3.
This is NOT the distributive property!
4 x  5 x 2  3x
4.
1
x
2
x
2
x x
=
2
( x  3)( x  5) x  1

= x 1
x5
x3
or in factored form
x3  x 2  5 x  3
6.
x3  3x  2
3
2
Num. x  x  5 x  3
1
 x  5x  7 
2
3 x
2
x  2x  8
( x  3)
=
( x  2)( x  4)
3
1
2
3
1 2 3
0
 x  1  x 2  2 x  3
 x 1 x 1 x  3
This IS the distributive property of
division over subtraction.
7.
1 1 5
x2  2 x  1
=
x3  1
( x  1)( x  1)
=
( x  1)( x 2  x  1)
( x  1)
2
( x  x  1)
8.
3
Denom. x  3 x  2
1 0 3
1
2
1
2
1 1 2
0
1
 x  1  x 2  x  2 
 x 1 x 1 x  2
So
3x 2 3x 2

9.
x 1 x 1
=
3x3  3x 2  3x3  3x 2
=
( x  1)( x  1)
6 x2
x2 1
S. Stirling 2015
10.
x3  x
x 1
x  x  1 x  1
 x  1
x3  x 2  5 x  3
x3  3x  2
x3
( x  1)( x  3)( x  1)
=
=
( x  1)( x  2)( x  1) x  2
x  x  1
Page 5 of 10
Getting Warmed Up Worksheet KEY
4a 2b 8b3t 2

11.
3st 15a
=
12.
Name ______________________
k
k2

x2  4 x  2
13.
k
x2
=
=
( x  2)( x  2) k 2
4a 2 b 15a
5a 3

=
3st 8b3t 2
2b 2 st 3
=
=
7
2
 3
2
5x
3x
21x  10
15 x 3
=
x
x  10
5
x
2  x  10 
2
16.
=
=
6x  3
3
2
3(2
x

1)
6
x
x
4
1

x  4x x  4
15.
2
4
x

=
x( x  4) x( x  4)
x4
x( x  4)
17.
2x  3
3

2
x  25 5  x
2x  3
3( x  5)

=
( x  5)( x  5) ( x  5)( x  5)
2 x  3  3x  15
=  x  12
( x  5)( x  5)
( x  5)( x  5)
19.
=
4
  x  5
6
1

3  x  5 3  x  5
(4n  1)(n  5) (n  5)(2n  4)
=

(n  5)(n  5)
(n  5)(n  5)
4n 2  21n  5  2n 2  6n  20
=
(n  5)(n  5)
2n 2  27 n  25
(n  5)(n  5)
4 x
( x  4)
8
10

=
2
x  16
10
 x  4 x  4 
8
S. Stirling 2015
=
20.
4
  x  5
3  x  5  12
4



5
  x  5
5
5
3  x  5
x  x  10 
6(2 x  1)
4n  1 2n  4

n5
n5
4
5 x
2
1

5  x 3x  15
=

18.
2x  3
3

=
=
( x  5)( x  5) ( x  5)
( x  6)( x  5)
=
4( x  5)( x  5)
( x  6)
4( x  5)
1
k ( x  2)
14.
x 2  11x  30
100  4 x 2
=
1
4
4


5 ( x  4) 5 x  20
Page 6 of 10
Getting Warmed Up Worksheet KEY
Name ______________________
II. Simplify completely, if possible.
4  2( x  3)
4
2

x 2  9 x  3  x  3 x  3
1.
1
1 = x 3 x 3

 x  3 x  3
x 3 x 3
=
 x  3 x  3
4  2x  6

2x
 x  3 x  3
2 x  10 2  x  5 x  5



2x
2x
x
VIP!
3a.
“Very Important Procedure”
3b.
5.
1
2
 4  x2   4x 2  x
1

5
2  x  1
 x  1
x
 1
2

2
2
 x2  2x
x
2
 1
2
x2  2 x  2
x
 1
2
2
4. Simplify by factoring: 2 x

4
1  12
x
4  5x 2
2
1
4  5x2 
1 
2x 2
4  5x2

1
1
1
 x 3 16  x 2  2  x 16  x 2  2
2
1
1
1
x 16  x 2  2   x 2  2 16  x 2  


2
x
 3 x 2  32 
1 
2 16  x 2  2
S. Stirling 2015
 x  1
2x2  4x  2
2
Simplify by factoring
1
1
1 21

x  16  x 2  2  2 x    x 16  x 2  2
2 2

2 16  x 2
2x2  2x  x2

2
3
1  12
x
4 x 2  6x2
2
3
3
4
1  12
1 1
x
4 x 2  x 2 6 x 2  2 x  3x 2
2
2
 x  3 x 2  32 
2
See page 8 of the “General Concepts” notes.
Multiply (use fractional exponents)
x  4  x2 
x
 x  1 2 x  x 2
2
 x  1
2
2.
2x
6.
1
2

2
Simplify by factoring
1
 1 1 
x 1  x  x 2 
2


1
2
1


 x 1

x 1
1

2


 2  x 12 x 12  1 



x 1
2
 2  x  x 12 

 2  x  x

3
3
2 x 1
2 x 1




Page 7 of 10
5 3
 x 2
2
Getting Warmed Up Worksheet KEY
Solving Equations
Name ______________________
No decimal answers!! Simplify all answers completely! Exclude imaginary roots!
1. Solve 5 x  3   x
5. Solve by completing the square
2
x 2  10 x  13
5x2  x  3  0
x 2  10 x  25  13  25
1  12  4(5)(3)
x
2(5)
x
 x  5
2
 12
x  5   12
1  61
10
x  5 2 3
2. Solve x3  5 x  3x 2  15
x
3
 3x 2    5 x  15   0
x 2  x  3  5  x  3  0
x
2
 5   x  3  0
x   5 or x  3
WRONG!
x  x 2  5  3  x 2  5
x3
You lost two roots!
3. Solve 0  x 5  x 3  20 x
0  x  x 4  x 2  20 
0  x  x 2  5  x 2  4 
x0
0  x2  4
0  x2  5
x  2
x  i 5
5x
10

x  3 2x  6
5x
10
6( x  3) 
( x  3) 
( x  3)
( x  3)
2( x  3)
6. Solve 6 
6 x  18  5x  5
11x  23
23
x
 2.09
11
Eliminate the imaginary. Calculus only deals with
real numbers.
4. Solve
2
1

x2  x x 1
x2 – x = 2x – 2 Used cross multiplication.
x2 – 3x + 2 = 0
(x – 2)(x – 1) = 0
x = 2 or x = 1
only 2, since 1 is not in the domain.
S. Stirling 2015
Page 8 of 10
Getting Warmed Up Worksheet KEY
2 x  6  x  3
7. Solve
2 x  6   x  3 
Name ______________________
9.
2
2
Don’t divide out the (x + 3)! But can divide out
the 2.
x  x 2  6 x  9   2( x  3)
2 x  6  x 2  6 x  9
0  x 2  8 x  15
x3  6 x 2  9 x  2 x  6
0   x  3 x  5 
x3  6 x 2  7 x  6  0
x = –3 or –5
Check because could gain a root
2  3  6   3  3
Solve 2 x  x  3  4( x  3)
Now rational root theorem:
2  5  6   5  3
00
3
1
2  2
So x = –3 is the only solution.
1
7
6
3 9
6
2
0
6
3
( x  3)( x 2  3x  2)  0
8. Solve
0  a bc
7  4a  2b  c
10  4a  b
3  32  4(1)(2)
x  3 or x 
2(1)
x
3  17
2
Used the elimination method, but could have
used substitution.
7  4a  2b  c
0  a  b  c
7  3a  b
10  4a  b
7  3a  b
3a
10  4  3  b
2  b
0  3 2 c
1  c
3
2
10. Solve 6 x  60  36 x  10 x
Again, need to get = 0.
6x3 – 36x2 + 10x – 60 = 0
2 [3x3 – 18x2 + 5x – 30] = 0
2 [3x2(x – 6) + 5(x – 6)] = 0
2 [(3x2 + 5)(x – 6)] = 0
2(3x2 + 5)(x – 6) = 0
So x   
5
and x = 6
3
Square root of negative extraneous. Eliminate
the imaginary. Calculus only deals with real
numbers.
Only solution is x = 6.
a = 3, b = –2, c = –1
S. Stirling 2015
Page 9 of 10
Getting Warmed Up Worksheet KEY
Name ______________________
Some Miscellaneous Things to Think About
1. Find
f ( x  x)  f ( x)
, if f ( x)  3x  2 .
x
2. Find
Use composition
3( x  x)  2   3 x  2 
x
3 x  3x  2  3 x  2
x
3x
3
x
f ( x  h)  f ( x )
, if f ( x)  x 2  4 x .
h
Use composition
( x  h) 2  4( x  h)   x 2  4 x 
h
x  2 xh  h  4 x  4h  x 2  4 x
h
2
2 xh  h  4h
h
h  2x  h  4
 2x  h  4
h
2x  h  4
2
2
On # 3 – 6, you may want to simplify the expression before evaluating!
3. Evaluate for a = 0.
b  a 
2
b
4.
2
a
b 2  2ab  a 2  b 2
a
a  2b  a 
a
2b  a

Evaluate for x = 4.
x 2
x4

x 2
x 2


x 2
1
x 2
Now if x = 4
1
1

42 4
Now if a = 0
2b  0  2b

5. Evaluate for x = 0
1
1

x4 4
x
4   x  4
4  x  4
x
x
1
4  x  4 x
1
4  x  4
So
1
1

4  0  4
16
6. Evaluate for x = 0. Hint: multiply numerator and denominator by the conjugate.
x  x  1  x  1
1
x
x  x  1  x  1
x  x  1  x  1
x  x  1  x  1

x


x  x  1   x  1
x
x


x  x  1  x  1
x
x  x  1  x  1
S. Stirling 2015
x  x  1 



x 1
For
x=0
1
x  0 1  x 1
1
2 x 1
Page 10 of 10
Related documents