Download Mu Alpha Theta National Convention: Hawaii, 2005 Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mu Alpha Theta National Convention: Hawaii, 2005
Solutions – Trigonometry Topic Test – Mu Division







1. Since  is an irrational number there are an infinite number of petals, by
definition.
sin  3 cos2  3
3 2 1 2
3
3 1 3 3
3  3
 (1) 




2.


3
2
3 2
6
6
3 3 1
 tan7 6 cot 7 4
3. The function in the neighborhood of x   2 is the line y=0 with the exception of
the point x   2, where y becomes 1. This is a removable discontinuity since




 x with the nearly equal piecewise function y  sin x x   2
replacing y  sin
x  2
 0

allows y to be continuous at x   2.

4. f (x)  24  cos(2 x) , f ( 2)  24  cos( )  24
5. 
Using the law of cosines at time t  2 , we get

c 2  (4  2)2  (3 2)2  2  (4  2)  (3 2)  cos(60 )  64  36  48  52 , so the

distance between the two points at t  2 is c  52 , since we are looking for the

distance they are moving
 apart or dc dt , we shall differentiate the law of cosines,
with the only constant being  . This gives us an equation of
 db
dc
da
db 
da 
2c
 2a  2b  2cos
60 
a  b , plugging in for the various given


 dt
dt
dt
dt
dt 

and derived values 
gives us:
dc
2 2 13
 2(2  4)(4)  2(2  3)(3)  (2  4)(3)  (2  3)(4)
dt
dc
4 13
 52
dt
dc
 13
dt
sin( x)
1
du
dx , setting cos(x)=u becomes;  
6. 
, which is; ln u = ln =
cos( x)
u
u
ln sec( x)
 
 
7.











4,  3,  6  1,
x  r cos sin   4  1 2  1 2
1
y  r sin  sin   4   3 2 1 2  3
r,,    x, y,z

z  r cos   4 
 3 2 2 3
3,2 3


lim 2tanh( 3x)  cosh( x)  sinh( x) =
x 


2   lim tanh( 3x) lim cosh( x)  sinh( x) =
x  
 x  
x
2  1  lim e  = 2
x 
9. f (x)  sin x sec x tan x  cos x csc x cot x  tan 2 x  cot 2 x 
sec 2 x 1 csc 2 x 1 sec 2 x  csc 2 x
8.
Mu Alpha Theta National Convention: Hawaii, 2005
Solutions – Trigonometry Topic Test – Mu Division
 f (x) dx   sec













2
x  csc 2 xdx  tan x  cot x 
sin x cos x sin 2 x  cos2 x
1



 2csc(2x)
1
cos x sin x
sin x cos x
sin( 2x)
2

1
d
d 
10.
arcsin x  arccos x  arctan x    arctan x  2
 x 1
dx
dx 2

11. At x=0, we can see that dy/dx=1. This eliminates all answers except B and E,
dy
 cos x
noticing that the x interval is  2 , the rest of the values match up to
dx
  ln 2 ln 2
e i  ei
e
e
1 22 5


12. Since cos 
, we have cos(i  ln 2) 
4
2
2
2

1 2


13. r  sin  is a circle of diameter 1, centered at (.5, 0). The area is then    
2 
4
4
4
2
2
2
2
14.  cos x  sin xdx  

 (cos x  sin x)(cos x  sin x) dx
1
 cos(2x) dx  2 sin( 2x)  C


sin x  x 
cos x 1
sin x  1 sin x  1
15. lim 
 lim
 lim
 lim

 x 0 
 3x 2 
 x 0 
 6x 
 6 x 0 
 x 
 6
x 3 
x 0 
2
2
6
16. sin 6 (x)
  3sin (x)cos (x)  cos (x) 
sin 6 (x)  3sin 2 (x)cos2 (x)  sin 2 x  cos2 x cos6 (x) 
 
sin 6 (x)  3sin 4 (x)cos2 (x)  3sin 2 (x)cos4 (x)  cos6 (x)
3
sin 2 x  cos2 x   13  1
cos  3  h   cos 3
cosh   3  cos 3


17. lim 
 lim 


h
h



h0
h0 
cos 3  h  cos  3
. This equation to the left is now in the standard
lim 
h

h0
form for the limit form of the derivative. With f (x)  cos x at x    3.
3
Then f  3  sin  3  sin  3 
2
18. Define f (x)  tan x , then


Derivative f
@x=0
0
 Zero
tan x

2
First
1
sec x
 Second
2
0
2sec x tan x
2
2
4
Third
4 sec x tan x  2sec x 2

The 
third derivate term of the series will be divided by 3!, so the answer is 1/3.
19. The
parametric equations define an ellipse, the question is asking for the
perimeter
of the ellipse, it is well known that the perimeter of an ellipse cannot be

evaluated exactly. The integral if set up, is an elliptic integral which cannot be
solved precisely.
Mu Alpha Theta National Convention: Hawaii, 2005
Solutions – Trigonometry Topic Test – Mu Division
20. We know that cos(3 )  4 cos3   3cos , by double angle and addition of angles
formulas. Then plug in   20 , we get cos(60 )  4 cos3 (20 )  3cos(20 ) ,
simplifying and moving all terms to one side we get
0  8cos3 (20 )  6cos(20 ) 1, rewriting to get a polynomial equation in terms of

x and y, yieldsy  8x 3  6x 1, where x  cos(20 ) is a solution of the equation.

21. For f (x)  sin x , f (14 ) (x)  f (144 3) (x)  f (x)  sin x
22. Set e y  (tan x)tan x , then












ln(tan x)
y  tan x  ln(tan x) 


cot x
sec 2 x 




ln(tan x)
sin 2 x 
 tan x 

lim 

lim

lim



2
2 x tan x 
x0  cot x  x0 csc x x0
cos


y
lim [tan x]  0 , that is lim y  0  lim e  e0  1
x0
x0
x0
arctan x
dx
23. 
, and the integral
dx , set u  arctan x , then du 
1 x 2
1 x 2
1
1
becomes  u du  u2 , which when put back in terms of x is, arctan 2 (x)
2
2

x

11
sin(
33)

sin(11)
sin(
3x)

sin(
x)
24.
rewritten with
, gives us
, expanding the

sin( 3x) to be in terms of sin( x) , we get
3sin( x)  4sin 3 (x) sin( x)  3sin 2 (x)  4sin 4 (x)  3sin 2 x  4sin 2 (x)(1 cos2 x) 


2
2
3sin 2 (x)  4 sin 2 (x) 4 sin 2 (x)cos2 (x)
 sin (x)  sin (2x) , which when
plugging x  11back into the equation gets the answer of sin 2 (22)  sin 2 (11) .
25. For ease of explanation BC  a , mBAC  A and similarly for the other sides
and angles. We have A  B  C  180 , so C  45 , now using the law of sines we
4 2 2

4 6
sin( A) sin( C)
sin( 60 ) sin( 45 ) 
have




c



3
a
c
4
c
32

3
5
7
x
x
x

 is the Maclaurin expansion for sin( x)
26. Yes. x  
3! 5! 7!
2

 No. 1 cos x only equals sin( x) when sin( x)  0
ix
ix
e
e

 sin( x)
No.

2i
1
1 

 No.
, the + C as well as csc(x) not being defined
 cot x csc x dx csc x  C


everywhere keep this from being possible.
Only the first one holds true. 1
27. h (x)  f (g(x)) g(x)  3tan 2 x sec 2 x

2
2
h( 3)  3tan 2 ( 3)sec 2 ( 3)  3 3  2  36
 



Mu Alpha Theta National Convention: Hawaii, 2005
Solutions – Trigonometry Topic Test – Mu Division









28. The maximum of a function of the form f (x)  asin x  bcos x is
a  4 and b  3, the maximum of the function is 5.
1
29. y  sin 2 x  cos2 x  sin 2 (2x), now
4


2
 2
 2



1
1
1
cos(4x)
1
1
2

 4 sin (2x) dx  4  2 dx  8 x  4 sin( 4 x)  16
0
0
0
e x  ex
e x  ex
30. sinh( x) 
, cosh( x) 
, therefore:
2
2
cosh 2 x  sinh 2 x  cosh(2x)

d
sinh x  cosh x
dx

d
cosh
 x  sinh x
dx
2sinh x cosh x  sinh( 2x)
cosh 2 x  sinh 2 x  1
and only II and IV are true.
a2  b2 , with
Related documents