Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Accelerated Precalculus Algebra Review #2 Name___________________ Period___Date____________ I. Solve each of the following equations for x. 1. y = 7x 3x 2 2. Y = 3 6 x4 2 3. (2x + 1)3 (x 2)3 = 0 4. 4 4 12 1x 1 x 5. 6. 2x 6 3 x 4 3 4 1 x x 2 x x 6 3x 3 2 2 7. x3 + bx2 2b2x = 0 8. (2x + 1)3/2 = 5(2x + 1)1/2 9. 2(2x 3) + 5 = 7 2 x 3 10. 24 5 1 x x 2 II. Solve each of the following inequalities for x. 1. x4 34x2 + 225 0 3. 1 2x 1 1 2x 2 5. |x + 4| > |3x| 2. x 3x 4 0 x 9 2 2 4. x2 + 6. 4 >5 x 2 2x 15 3 x5 III. Write an absolute value inequality for each of the following: 1. 1 2 3 4 5 6 7 8 9 10 2. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 IV. Factor each of the following: 1. a3 + b3 + 3ab(a + b) 2. x6 y6 3. ax2 + (a + b)x + b 4. 64(x a)3 x + a 5. (ax + b)1/2 ax b b 7. x4 + 64 (Hint: Add and subtract 16x2) 6. (x + y)2 + (x + z)2 (z + t)2 (y + t)2 8. x4 15x2 + 9 (add and subtract a term) 3 2 x for x 1 V. If f(x) = x for 1 x 1 , sketch f(x), and evaluate f(3) + f(2) + f(0). 3 2 x for x 1 2 VI. Given that the coordinates of A = (4, 3), B = (8, 7) and C = (2, 5), 1. Write the equation of AB in standard form. 2. Find BC. 3. Write the equation of the perpendicular bisector of AC in slope-intercept form. 4. Find the area of ∆ABC. 5. Write the equation of the line that contains the median to BC. 6. Write the equation of the line that contains the altitude to BC. 7. Locate the coordinates of D if ABCD is a parallelogram. 8. If h is the length of any vertical segment that joins points on AB to points on BC, write an expression for h in terms of x. VII. If f(x) = 3x2 – 4x and g(x) = 4 – x: 1. Write f(g(x)). 2. Write f(x h) f(x) h Answers: I. 1. x = 2y 7 3y 1 3. x = −3 or x = 2. x = 3 5 3i 14 4y 21 6y 4. x = 0 or x = 7 3 5. x = 29 or x = 5 6. x = 3 or x = −7 7. x = −2b or x = b or x = 0 8. x = 2 or x = −1/2 9. x = 2 or x = 37/8 10. x = 8 or x = −3 II. 1. [−5, −3] U [3, 5] 2. (−∞, −3) U (−1, 3) (4, ∞) 3. (−∞, -½) U [ 1/6 , ∞) 4. (−∞, −2) U (−1, 0) U (0, 1) U (2, ∞) 5. (-1, 2) 6. (−∞, −6] U [0, ∞) III. 1. |x – 6.5| > 1.5 2. |x + 1| < 4 IV. 1. (a + b)3 2. (x – y)(x2 + xy + y2)(x + y)(x2 – xy + y2) 3. (ax + b)(x + 1) 4. (x – a)(8x – 8a – 1)(8x – 8a + 1) 5. ( ax) ax b b(ax b) 6. 2(x – t)(x + y + z + t) 7. (x2 + 8 + 4x)(x2 + 8 − 4x) = (x2 + 4x + 8)(x2 – 4x + 8) 8. (x2 − 3 + 3x)(x2 − 3 − 3x) = (x2 + 3x – 3)(x2 – 3x – 3) V. 3 – 2(−3) + 3 + 2∙2 + 02 = 16 VI. 1. 5x – 2y = 26 2. 102 22 2 26 5. 9x + y = 33 6. y = − 5x + 17 7. (14, −1) or (−6, −5) or (2, 15) VII. 1. 3x2 – 20x + 32 9. h(x) = |2.3x – 7.6| 3. y = (3/4)x + (1/4) 8. 2x + 5y = 22 2. 6x + 3h - 4