Download Algebra Review 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Accelerated Precalculus
Algebra Review #2
Name___________________
Period___Date____________
I. Solve each of the following equations for x.
1. y =
7x
3x  2
2. Y =
3  6
x4
2
3. (2x + 1)3  (x  2)3 = 0
4.  4   4  12
1x
1  x 
5.
6.
2x  6  3  x  4
3
4
1


x  x  2 x  x  6 3x  3
2
2
7. x3 + bx2  2b2x = 0
8. (2x + 1)3/2 = 5(2x + 1)1/2
9. 2(2x  3) + 5 = 7 2 x  3
10. 24  5  1
x
x
2
II. Solve each of the following inequalities for x.
1. x4  34x2 + 225  0
3.
1  2x 1

1  2x 2
5. |x + 4| > |3x|
2.
x  3x  4
0
x 9
2
2
4. x2 +
6.
4
>5
x
2
2x  15
3
x5
III. Write an absolute value inequality for each of the following:
1.
1 2 3 4 5 6 7 8 9 10
2. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
IV. Factor each of the following:
1. a3 + b3 + 3ab(a + b)
2. x6  y6
3. ax2 + (a + b)x + b
4. 64(x  a)3  x + a
5. (ax + b)1/2 
ax  b
b
7. x4 + 64 (Hint: Add and subtract 16x2)
6. (x + y)2 + (x + z)2  (z + t)2  (y + t)2
8. x4  15x2 + 9 (add and subtract a term)
3  2 x for x  1 


V. If f(x) =  x for  1  x  1  , sketch f(x), and evaluate f(3) + f(2) + f(0).
 3  2 x for x  1 


2
VI. Given that the coordinates of A = (4, 3), B = (8, 7) and C = (2, 5),
1. Write the equation of AB in standard form.
2. Find BC.
3. Write the equation of the perpendicular bisector of AC in slope-intercept form.
4. Find the area of ∆ABC.
5. Write the equation of the line that contains the median to BC.
6. Write the equation of the line that contains the altitude to BC.
7. Locate the coordinates of D if ABCD is a parallelogram.
8. If h is the length of any vertical segment that joins points on AB to points on BC,
write an expression for h in terms of x.
VII. If f(x) = 3x2 – 4x and g(x) = 4 – x:
1. Write f(g(x)).
2. Write
f(x  h)  f(x)
h
Answers:
I. 1. x =
2y  7
3y  1
3. x = −3 or x =
2. x =
3  5 3i
14
4y  21
6y
4. x = 0 or x =
7
3
5. x = 29 or x = 5
6. x = 3 or x = −7
7. x = −2b or x = b or x = 0
8. x = 2 or x = −1/2
9. x = 2 or x = 37/8
10. x = 8 or x = −3
II. 1. [−5, −3] U [3, 5]
2. (−∞, −3) U (−1, 3) (4, ∞)
3. (−∞, -½) U [ 1/6 , ∞)
4. (−∞, −2) U (−1, 0) U (0, 1) U (2, ∞)
5. (-1, 2)
6. (−∞, −6] U [0, ∞)
III. 1. |x – 6.5| > 1.5
2. |x + 1| < 4
IV. 1. (a + b)3
2. (x – y)(x2 + xy + y2)(x + y)(x2 – xy + y2)
3. (ax + b)(x + 1)
4. (x – a)(8x – 8a – 1)(8x – 8a + 1)
5.
( ax) ax  b
b(ax  b)
6. 2(x – t)(x + y + z + t)
7. (x2 + 8 + 4x)(x2 + 8 − 4x)
= (x2 + 4x + 8)(x2 – 4x + 8)
8. (x2 − 3 + 3x)(x2 − 3 − 3x)
= (x2 + 3x – 3)(x2 – 3x – 3)
V. 3 – 2(−3) + 3 + 2∙2 + 02 = 16
VI. 1. 5x – 2y = 26
2.
102  22  2 26
5. 9x + y = 33
6. y = − 5x + 17
7. (14, −1) or (−6, −5) or (2, 15)
VII. 1. 3x2 – 20x + 32
9. h(x) = |2.3x – 7.6|
3. y = (3/4)x + (1/4)
8. 2x + 5y = 22
2. 6x + 3h - 4
Related documents