Download AP Calculus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Avon High School
VU Calculus
Name ___________________________
Summer Review Packet
Period ______
Topic 1: Fractional & Negative Exponents
Simplify using only positive exponents.
1.) 3x 3
 2   2 
2.) 2 

2
 2  x    2  x  
 1
4
1 
3.)  2  1 1  2 
x y
y 
x
1
2
Topic 2: Domain
Find the domain of the following functions:
1.) y 
4.) y 
3x  2
4x  1
2x  9
2x  9
2.) y 
x2  5x  6
x 2  3x  18
5.) y  log  2 x  12 
3.) y 
6.) y 
x 3  x 3
x
,
cos x
0  x  2
Topic 3: Solving Inequalities: Absolute Value
Write the following absolute value equations as piecewise equations:
1.) y  2 x  4
2.) y  6  2 x  1
3.) y  4 x  1  2 x  3
Solve the following absolute value inequalities:
4.) x  3  12
5.) x  3  4
6.) 3x  4  2
Topic 4: Solving Inequalities: Quadratic
Write the following absolute value equations as piecewise equations:
1.) y  x 2  1
2.) y  x 2  x  12
3.) y  x 2  4 x  4
Solve the following by factoring and making appropriate sign charts:
4.) x2  16  0
5.) x2  6 x  16  0
6.) 2 x2  5x  3
Topic 5: Special Factoring Formulas
Factor completely.
1.) x3  8
2.) x4  11x2  80
3.) x 3  xy 2  x 2 y  y 3
Topic 6: Function Transformation
Here is a graph of y  f  x  :
Sketch the following graphs:
1.) y  2 f  x 
2.) y   f  x 
4.) y  f  x  2
5.) y  f  x 
3.) y  f  x  1
6.) y  f
x
Topic 7: Factor Theorem (p over q method)
Use the p over q method and synthetic division to factor the polynomial P  x  . Then solve P  x   0 .
1.) P  x   x3  4 x 2  x  6
2.) P  x   2 x3  3x 2  18 x  8
Topic 8: Even/Odd Functions
Show work to determine if the relation is even, odd, or neither.
1.) f  x   2 x 2  7
2.) f  x   4 x3  2 x
3.) f  x   4 x 2  4 x  4
Topic 9: Solving Quadratic Functions and Quadratic Formula
Solve each equation over the real number system.
1.) 7 x2  3x  0
2.) x 2 6 x  4  0
3.) x 
1 13

x 6
Topic 10: Asymptotes
For each function, find the equations of both the vertical asymptote(s) and horizontal asymptote (if it exists).
1.) y 
x
x3
2.) y 
x4
x2  1
3.) y 
x4
x2  1
Topic 11: Complex Fractions
Simplify the following:
1.)
x
x
1
2
1
4
x
2.)
1
2
x
3

x
3.)
4

x
4
y
3
y
Topic 12: Composition of Functions
If f  x   x 2 and g  x   2 x  1, find the following:
1.) f  g  2  
2.) g  f  2  
3.) f  g  x  
Topic 13: Solving Rational Equations
Solve each equation for x.
1.)
2 5 1
 
3 6 x
2.)
x 1 x 1

1
3
2
3.)
2
1
16

 2
x  5 x  5 x  25
Topic 14: Basic Right Angle Trigonometry
Solve the following:
If point P is on the terminal side of θ, find all 6 trigonometric functions of θ. Draw a picture.
1.) P  2,4
2.) P
5
, θ in quadrant II,
13
find sin  and tan  .

5, 2

4.) If cot   3 , θ in quadrant III,
3.) If cos   
find sin  and cos .
Find the exact value of the following without a calculator:
5.) sin 2 225  cos2 300
6.)  6sec180  4cot 90 
2
7.)  4cos30  6sin120
Topic 15: Solving Trigonometric Equations
Solve each equation on the interval  0, 2  .
1.) sin x 
1
2
2.) cos2 x  cos x
3.) 4sin 2 x  1
2
Topic 16: Sketches of Basic Functions
Sketch each of the following as accurately as possible. You will need to be VERY familiar with each of these
graphs throughout the year.
1. y  x
2. y  x 2
3. y  x3
4. y  x
5. y  x
6. y 
x
x
7. y  x
1
8. y  x
3
9. y  sin x
2
3
10. y  cos x

 







 








 











13. y  sec x
14. y  csc x





 

12. y  cot x




11. y  tan x
 








 



15. y  e x
16. y  ln x
17. y 
1
x
18. y  x
19. y 
1
x2
20. y  2 x
21. y  4  x 2
22. y 
sin x
x

 







Related documents