Download references

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
REFERENCES
Abrams, P. A., Ginzburg L. R., 2000: The nature of predation: prey dependent, ratio
dependent or neither, Trends in Ecology and Evolution, 15, 337-341.
Abbas, S., Banerjee, M., and Haungerbuhler, N., 2010: Existence, uniqueness and
stability analysis of allelopathic stimulatory phytoplankton models, J. Math. Anal. Appl.,
367, 249-259.
Agarwal, M., Devi, S., 2011: Harvesting of the vegetation biomass and grazer population
with its effects on predator population: a mathematical model, Int. J. Ecol. Econ. Stat.,
20, 14-31.
Akcakaya, H. R., Arditi R., and Ginzburg L. R., 1995: Ratio-dependent predition: an
abstraction that works, Ecology, 76, 995-1004.
Andrews, J.F., 1968: A mathematical model for the continuous culture of
microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng, 10, 707-723.
Arditi R., Ginzburg L. R. and Akcakaya H. R., 1991: Variation in plankton density
among lakes: a case of ratio dependent models, American Naturalist, 138, 1287- 1296.
Arditi, R., Saiah, H., 1992: Empirical evidence of the role of heterogeneity in ratio
dependent consumption, Ecology, 73, 1544-1551.
Arditi, R., Michalski, J., 1996: Nonlinear food web models and their responses to
increased basal productivity. In G. A. Polis and K. O. Winemiller, eds., Integration of
Patterns and Dynamics, 122–133. Chapman & Hall, London.
Arditi, R., Ginzburg, L.R., 1989: Coupling in predator-prey dynamics: ratio-dependence,
J. Theoretical Biology, 139, 311-326.
227
Bambaradeniya, C.N.B., Edirisinghe, J.P., Silva, D.N., Gunatilleke, C.V.S, Ranawana,
K.B., and Wijekoon, S., 2004: Biodiversity associated with rice agro-ecosystem in Sri
Lanka, Biodiversity Conservation, 13, 1715–1753.
Baek, H., 2010: Dynamic complexities of a three-species Beddington-DeAngelis system
with impulsive control strategy, Acta Applicandae Mathematicae, 110(1), 23-38.
Beck, M.W., 1998: Comparison of the measurement and the effects of habitat structure
on gastropods in rocky intertidal and mangrove habitats, Marine Ecology Progress
Series, 169, 165-178.
Bell, S.S., McCoy, E.D. and Mushinsky, H.R., 1991: Habitat Structure the physical
arrangement of objects in space, London, Chapman and Hall.
Beddington, J. R., 1975: Mutual interference between parasites or predator and its effect
on searching efficiency, J. Animal Ecol., 44, 331-340.
Bhattacharya, D. K., Begum, S., 1996: Bionomic equilibrium of two species system,
Math. Biosci., 135(2), 111-127.
Birkhoff, G., Rota,G.C., 1982: Ordinary Differential Equations (Glnn).
Braza P. A., 2008: A dominant predator, a predator, and a prey, Mathematical
Biosciences and Engineering, 5(1), 61-73.
Cao, J.D., 2000: Periodic oscillation solution of biderictional associative memory
networks with delay, Phys. Rev. E, 59, 1825–1828.
Cantrell, R.S., Consner, C., 2001: On the dynamics of predator–prey Models with the
Beddington– DeAngelis Functional response, J. Math Anal. Appl., 257, 206–22.
Celik, C., 2008: The stability and Hopf bifurcation of a predator–prey system with time
delay, Chaos, Solitons Fract, 37(1), 87–99.
228
Celik, C., 2009: Hopf bifurcation of a ratio-dependent predator–prey system with time
delay, Chaos, Solitons Fract, 42, 1474–1484.
Chaudhuri, K.S., Ray, S.S., 1996: On the combined harvesting of a prey-predator system,
J. Biol. Sys., 4, 373-389.
Chaudhuri, K.S., 1986: A bioeconomic model of harvesting a multispecies fishery, Ecol.
Model., 32, 267–279.
Clark, C.W., 1990: Mathematical Bioeconomic: The Optimal Management of Renewable
Resources, 2nd ed., John Wiley and Sons.
Cooke, K.L., Grossman, Z., 1982: Discrete delay, distributed delay and stability switches,
J. Math Anal Appl., 86(2), 592–627.
Dai, G., Tang, M., 1998: Coexistence region and global dynamics of a harvested
predator-prey system, SIAM J Appl. Math., 58, 193-210.
DeAngelis, D. L., Goldstein, R. A. and O’Neill, R. V., 1975: A model for trophic
interaction, Eocolgy, 56, 881-892.
Dubey B., Upadhyay R. K., 2004: Persistence and extinction of one prey and two
predator system, J. Nonlinear Analysis. Modelling and Control, 9(4), 307-329.
Dubey, B., Chandra, P., and Sinha, P., 2002: A resource dependent fishery model with
optimal harvestig policy, J. Biol. Syst.,10,1-13.
Eckmann, J.P., 1981: Rev.Mod.Phys. , 53, 643.
Elettreby, M. F., 2009: Two prey one predator model, Chaos, Solitons and Fractals,
39(5), 2018-2027.
Eubanks, M.D., and Denno, R.F., 2000: Host plants mediate omnivore-herbivore
interactions and influencee prey suppression, Ecology, 81, 936-947.
229
Freedman, H. I., 1980: Deterministic mathematical models in population ecology, M.
Dekker, New York.
Freedman H.I., Waltman P., 1984: Persistence in model of three interacting predator-prey
population, Math. Biosci., 68, 213-231.
Freedman, H.I., 1980: Deterministic mathematical models in population ecology, New
York, Marcel Dekker.
Freedman, H.I., Waltman, P., 1977: Mathematical analysis of some three-species foodchain models, Math. Biosci., 33, 257-276.
Freedman, H.I., So, J.W.-H., 1985: Global stability and persistence of simple food chains,
Math. Biosci., 76, 69-86.
Gao, H., Wei, H., Sun, W. and Zhai, X., 2000: Functions used in biological models and
their influence on simulations, Indian Journal of Marine Science, 29, 230-237.
Gakkhar, S., Naji, R.K., 2002: Chaos in three species ratio-dependent food chain, Chaos,
Solitons & Fractals, 14,771-778.
Gakkhar, S., Naji, R.K., 2003: Chaos in seasonally perturbed ratio-dependent, Chaos,
Solitons and Fractals, 15,107-118.
Gilpin, M.E., 1979: Spiral chaos in a predator-prey model, American Naturalist, 107,
306-308.
Gopalsamy, K., 1992: Stability and Oscillations in Delay Differential Equations of
Population Dynamics, Kluwer Academics, Dordrecht.
González-Olivares, E., Rojas-Palma, A., 2011: Multiple limit cycles in a Gause type
predator–prey model with Holling type III functional response and Allee effect on prey,
Bull. Math. Biol., 73, 1378–1397.
230
Guckenheimer, J., Holmes, P., 1983: Nonlinear oscillations, dynamical systems and
bifurcations of vector fields, Springer,Verlag, New York, USA.
Hale, J., 1977: Theory of functional differential equations, New York: Springer.
Hasting, A., Powell, T., 1991: Chaos in three species food chain, Ecology, 72, 896-903.
Holling, C.S., 1959: Some characteristics of simple types of predation and parasitism,
Can. Entomologist, 91, 385–398.
Hsu, S. B., Hwang, T. W., Kuang Y., 2001: Rich dynamics of a ratio-dependent one
prey- two predators model, J. Math. Biol., 43, 377-396.
Hughes, A.R., Grabowski, J.H., 2006: Habitat context influences predator interference
interactions and the strength of resource partitioning, Oecologia, 149, 256–264.
Kesh, D., Sarkar, A., Kand, and Roy, A. B., 2000: Persistence of two preys – one
predator system with ratio dependent predator influence, Math. Appl. Sci., 23, 347-356.
Kar, T. K., Chaudhury, K. S., 2004: Harvesting in a two-prey one-predator fishery,
ANZIAM J., 45, 443-456.
Kar, T. K., Chakraborty, K., and Pahari, U. K., 2010: A prey-predator model with
alternative prey: Mathematical model and analysis, Canadian Applied Mathematics
Quarterly, 18(2), 137-168.
Kar, T .K. , Misra, S. K, and Mukhopadhyay, B., 2006: A Bioeconomic model of a ratiodependent prey-predator system and optimal harvesting, J. Appl. Math. and Comp., 22 (12), 387- 401.
Kar, T. K. , Chakroborty, K., 2010: Bio economic modeling of a prey-predator system
using differential algebraic equations, Int. J. Eng., Sci. and Tech., 2(1), 13-34.
231
Kuang, Y., 1993: Delay Differential Equations with Applications in Population
Dynamics. Academic Press, New York.
Kuang, Y., 1990: Global stability of Gause-type predator-prey systems, J. Math. Biol.,
28, 463 – 474.
Kuang, Y., 2002: Basic Properties of Mathematical Population Models, J of
Biomathematics, 17, 129-142.
Leung, A., 1995: Optimal harvesting co-efficient control of steady state prey-predator
diffusive Volterra-Lotka systems, Appl. Math. Optim., 31, 219.
Macdonald, N., 1989: Biological Delay Systems: Linear Stability Theory, Cambridge
Univ. Press, Cambridge.
May, R.M., 1974: Stability and Complexity in Model Ecosystem, Princeton Univ. Press,
Princeton.
Meng, X.Y., Huo, H. F., and Xiang, H., 2011: Hopf bifurcation in a three-species system
with delays, J. Appl. Math. Comput., 35, 635–661.
Murray, J.D., 1989: Mathematical Biology, Springer-Verlag, New York.
Murray, J.D., 1993: Mathematical Biology, Second Corrected Ed., Springer, Heidelberg.
Myerscough, M.R., Gray, B.E., Hograth, W.L., and Norbury, J., 1992: An analysis of an
ordinary differential equation model for a two-species predator-prey system with
harvesting and stocking, J. Math. Biol., 30, 389-411.
Naji, R.K., Balasim, A.T., 2007: Dynamical behavior of a three species food chain model
with Beddington-DeAngelis functional response, Chaos Solitons and Fractals, 32, 18531866.
232
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., 1964:
The Mathematical Theory of Optimal Processes, Pergamon Press, London.
Qu, Y., Wei, J., 2007: Bifurcation analysis in a time-delay model for prey–predator
growth with stage-structure, Nonlinear Dyn., 49, 285–294.
Rojas-Palma, A., Gonzalez-Olivares, E., 2012: Optimal harvesting in a predator–prey
model with Allee effect and sigmoid functional response, Applied Mathematical
Modelling, 36, 1864–1874.
Rosenzweig, M. L., 1969: Why the prey curve has a hump, Amer.Nat.103, 8187.
Schaefer, M.B., 1957: Some considerations of population dynamics and economics in
relation to the management of marine fisheries, J. Fisheries Res. Board Can., 14, 69–68.
Schaffer, W.M., 1985: Order and chaos in ecological systems, Ecology, 66, 93-106.
Schaffer, W.M., Kot, M., 1986a: Chaos in ecological systems, the coals that Newcastle
forgot, Trends in Ecology and Evolution, 1, 58-63.
Song, Y., Wei, J., 2004: Bifurcation analysis for Chen’s system with delayed feedback
and its application to control of chaos, Chaos, Solitons Fract., 22, 75–91.
Srinivasu, P.D.N., Prasad, B.S.R.V., 2011: Role of quantity of additional food to
predators as a control in predator-prey systems with relevance to pest management and
biological conservation, Bull Math Biol., 73, 2249-2276.
Srinivasu, P.D.N., Prasad, B.S.R.V., and Venkatesula, M. 2007: Biological control
through provision of additional food to predators: a theoretical study, Theor. Popul. Biol.,
72, 111-120.
Strogatz, S. H., 2008: Non-linear dynamics and chaos with applications to Physics,
Biology, Chemistry, and Engineering, WestView Press.
233
Sun, C., Lin, Y., and Han, M., 2006: Stability and Hopf bifurcation for an epidemic
disease model with delay, Chaos, Solitons Fract., 30, 204–216.
Tansley, A.G., 1946: Introduction to Plant Ecology, George Allen & Unwin ltd, Museum
Street, London.
Tripathi, J.P., Abbas, S., and Thakur, M., 2012: Stability analysis of two prey one
predator model, Numerical Analysis and Applied Mathematics ICNAAM 2012 AIP Conf.
Proc. 1479, 905-909; doi:10.1063/1.4756288.
Turchin, P., 2003: Complex Population Dynamics, in: A Theoretical/Empirical Synthesis,
Monographs in Population Biology, 35, Princeton University Press.
Upadhyay, R.K., Rai, V., 1997: Why chaos is rarely observed in natural populations,
Chaos, Solitons and Fractals, 8(12), 1933-1989.
Upadhyay, R.K., Rai, V., 2001: Crisis-limited chaotic dynamics in ecological systems,
Chaos, Solitons and Fractals, 12, 205-218.
Vandermeer, J., 1993: Loose coupling of predator-prey cycles: Entrainment, chaos, and
intermittency in the classic MacArthur consumer-resource equations, American
Naturalist, 141,687-716.
Van Rijin, P.C.J., Sabelis, M.W., 1993: Does alternative food always enhance biological
control? The effect of pollen on the interaction between western flower thrips and its
predators, Bulletin IOBC/WPRS, 16, 123 – 125.
Van Rijin, P.C.J., Tanigoshi, L., 1999: The contribution of extrafloral nectar to survival
and reproduction of the predatory mite Iphiseius degenerans on Ricinus communis,
Experimental and Applied Acarology, 23, 281 – 296.
234
Wang, F., Pang, G., 2008: Chaos and Hopf bifurcation of a hybrid ratio-dependent three
species food chain, Chaos Solitons and Fractals, 36, 1366-1376.
Wang, F., Zhang, S., Chen, L., and Sun, L., 2005: Permanence and Complexity of a
Three Species Food Chain with Impulsive Effect on the Top Predator, Int J Nonlinear Sci
Numer Simul, 6(2), 169-180.
Yang, H., Tian, Y., 2005: Hopf bifurcation in REM algorithm with communication delay,
Chaos, Solitons Fract., 25, 1093–1105.
Yang, Y., 2009: Hopf bifurcation in a two-predator, one-prey system with time delay,
Appl. Math. Comput., 214, 228–235.
Yan, X.P., Zhang, C.H., 2008: Hopf bifurcation in a delayed Lokta-Volterra predatorprey system, Nonlinear Anal., Real World Appl., 9, 114–127.
Zhang, J., Fan, M. and Kuang, Y., 2006: Rabbits Killing birds revisited, Mathematical
Biosciences, 203, 100 – 123.
235
Related documents