Download 2.1 Random Variables, Expected Values and Variance

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
15
2. Probability Distributions
2.1. Random Variables, Expected Values and Variance
Definition (random variable): A random variable is a numerical description
of the outcome of an experiment.
There are two common types of random variables. They are:
Discrete random variable: a quantity assumes either a finite number of
values or an infinite sequence of values, such as 0, 1, 2, 
Continuous random variable: a quantity assumes any numerical value in an
interval or collection of intervals, such as time, weight, distance, and
temperature.
Definition (probability distribution (or density) function (p.d.f)): a
function describes how probabilities are distributed over the values of the
random variable.
Required conditions for a discrete probability distribution function:
Let a1 , a 2 ,, a n , be all the possible values of the discrete random variable X.
Then, the required conditions for
f (x)
to be the discrete probability
distribution for X are
(a) P X  ai   f (ai )  0, for every i.

(b)
 f a   f a   f a     f a     1
i 1
i
1
2
n
Required conditions for a continuous probability density:
Let the continuous random variable Z taking values in subsets of  ,  .
Then, the required conditions for f (x) to be the continuous probability density
function for Z are
(a)
f ( x)  0,    x  .

(b)

f ( x )dx  1

Note: As X is discrete,
P(c  X  d ) 
 f a  .
cai d
15
i
16
As X is continuous,
d
P (c  X  d ) 
 f ( x)dx.
c
Expected Value and Variance:
As X is discrete,

E ( X )     ai f ai   a1 f ( a1 )  a2 f (a2 )    an f (an )  
i 1
and
Var ( X )   2  E X  E ( X )   (ai   ) 2 f (ai )
2
i
 (a1   ) f (a1 )  (a2   ) f (a2 )    (an   ) 2 f (an )  
2
2
As X is continuous,
E( X )   

 xf ( x) dx

and
Var ( X )   2  E  X  E ( X ) 
2

 ( x  u)
2
f ( x) dx

Important Properties of Expected Value and Variance:
a, b are constants and X is discrete or continuous.
1.
 
Var X   E X 2   2 .
2. EaX  b  aE X   b .
3. Var aX  b   a 2Var  X 
Example 1:
The probability distribution functions (discrete random variable) or probability
density functions (continuous random variable) for a random variable X are
(a)
c exp  6 x , x  0

f ( x)    cx,  1  x  0

0, otherwise

16
17
(b)


f x   cx 2 exp  x 3 , x  0
(c)
x
1
f  x   c  , x  0, 1, 2, 
3
Find c .
[solution:]
(a)
  cx 2 
  c exp  6 x 



cxdx

c
exp

6
x
dx

1




1
0

 1
2
6

0

 1
c c
3c  c
3
   1
 1 c 
2 6
6
2

0

0
(b)


 

  c exp  x 3 
1
3
3
cx
exp

x
dx

1

c
exp

x
dx

1


 1
0
0 3
3

0
c
  1 c  3
3
 
2
3
 
(c)
x

1
c   1 

x 0  3 
c 
 1 
 1  1 2

  1  3c  1
c 1        1  c
2
 1  1 
 3  3 

3

2
3
Example 2:
The probability distribution function for a discrete random variable X is
f ( x )  2k , x  10
k , x  20
k  0.2, x  30
0, otherwise
where k is some constant. Please find
(a) k (b) P( X  15 or X  40 ) (c) E X  and Var X  (d) E5 X  2
(e) Var 3 X  7
17
18
[solution:]
(a)
 f ( x)  f (10)  f (20)  f (30)  2k  k  k  0.2  1
x
 k  0.3 .
(b) P( X  15 or X  40)  P( X  10 or X  20 or X  30)  1 .
(c)
u  E ( X )   xf ( x)  10  f (10)  20  f (20)  30  f (30)
x
 10  0.6  20  0.3  30  0.1  15
and
E ( X 2 )   x 2 f ( x)  10 2  f 10  20 2  f 20  30 2  f 30
x
 100  0.6  400  0.3  900  0.1  270
 
 Var  X   E X 2   2  270  225  45
(d) E5 X  2  5E X   2  5 15  2  77.
(e) Var (3 X  7)  32 Var X   9  45  405 .
Example 3:
Let X be a discrete random variable representing the number of hours
a college student spending on reading novels per week. The following
probability distribution has been proposed.
i3
f i  
, i  1, 2, 3 ,
9c
where k is some constant.
(a) Compute c. (b) Compute P X  1.2 and P X  2.2 .
(c) Compute E X  a nd Var X  .
[solution:]
(a)
 f (i)  f (1)  f (2)  f (3) 
i
13 23 33 36 4



 1
9c 9c 9c 9c c
 c  4.
(b) P ( X  1.2)  P ( X  1)  f 1 
1
1
.and

9  4 36
P( X  2.2)  P( X  3)  f 3 
(c)
18
33
27

.
9  4 36
19
u  E ( X )   if (i )  1  f (1)  2  f (2)  3  f (3)
i
 1
1
8
27 98 49
 2
 3


36
36
36 36 18
and
E ( X 2 )   i 2 f (i )  12  f 1  2 2  f 2   32  f 3
i
 1
1
8
27 276 46
 4
 9


36
36
36
36
6
 
 Var  X   E X 2   2 
2
46  49 
    0.2561
6  18 
Example 4:
The probability density function for a continuous random variable X is
f ( x )  a  bx 2 , 0  x  1
0, otherwise.
where a, b are some constants. Please find
(a) a, b if E ( X ) 
3
(b) Var( X ) .
5
[solution:]
(a)
 a  bx dx  1 
1

1
f ( x)dx  1 
2
0
ax 
0
 a
b 3 1
x |0  1
3
b
1
3
and
1
1
0
0


E ( X )   xf ( x)dx   x a  bx 2 dx 
Solve for the two equations, we have a 
a 2 b 4 1 a b 3
x  x |0   
2
4
2 4 5
3
6
.
, b 
5
5
(b)
f ( x) 
3
6

x2 , 0  x  1
5
5
0, otherwise.
Thus,
19
20
Var ( X )  E  X  E ( X )  E ( X )  E ( X )
2
2
2
 3
 E( X )   
5
2
9
3 6 2
  x dx 
25
5 5

0
1
6 5 1
9
1
6
9
2
 x3 
x |0 
 


5
25
25 5 25 25 25
1
1
9
  x f ( x ) dx 

25
0
x
2
2
Example 5:
The probability density function for a continuous random variable X is
x  2

,2 x  4
f ( x )   18

0, otherwise



Please find (a) P X  1 (b) P X 2  9 (c) E X  and Var X 


(d) E 9 X 2  8 X  2 (e) Var6 X  8 .
[solution:]
1
 x2 x
x2
 1 1  1 1 2
P X  1  P 1  X  1  
dx             
18
 36 9  1  36 9   36 9  9
1
1
(a)
(b)


P X 2  9  P 3  X  3 
x2
3 18 dx 
3
2
 0dx 
3
3
 x2 x 
x2
25
2 18 dx   36  9   36
2
3
(c)
4
EX    

2
x  2 dx 
x
18
4
 x2 x 
 x3 x2 
  18  9 dx   54  18   2 .
 2
2
4
Since
   x
4
E X
2
2
2
x  2 dx 

18
4
 x3 x2 
 x4 x3 
  18  9 dx   72  27   6 ,
 2
2
4
 
Var  X   E  X     E X 2   2  6  2 2  2 .
2


 
(d) E 9 X 2  8 X  2  9E X 2  8E  X   2  9  6  8  2  2  72 .
(e) Var 6 X  8  6 2 Var  X   36  2  72
20
2
21
Definition (cumulative distribution function (c.d.f)): F x  P X  x.
Important Properties of CDF:
1. CDF is right continuous.
2. As X is discrete, F x  
 f a  ;
ai  x
i
As X is continuous and f is continuous, f x   F ' x  .
Example 2 (continuous):
The probability distribution function for a discrete random variable X is
f ( x )  0.6, x  10
0.3, x  20
0.1, x  30
0, otherwise
Thus, the CDF is
F ( x )  0, x  10
0.6, 10  x  20
0.3, 20  x  30
1, x  30
Example 1 (a):
The probability distribution functions (discrete random variable) or probability
density functions (continuous random variable) for a random variable X are
3
 2 exp  6 x , x  0

3

f ( x)   
x,  1  x  0
2

0, otherwise



Thus, as  1  x  0 ,
x
  3x 2 
 3x
3
2
F x   
dx  
  1 x
2
 4  1 4
1
x


as 0  x   ,
 3x
3
3   3 exp  6 x 
3 1
F x   
dx   exp  6 x dx   

  1  exp  6 x  .

2
2
4  2
6
0 4 4
1
0
x
x
x
21
22
Thus, the CDF is
F ( x )  0, x  1


3
1 x2 , 1  x  0
4
3
1
1  exp  6 x , 0  x  

4
4
22
Related documents