Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Differential Equations Part II -Summary 6 Annihilators Sanchez Annihilators. An annihilator of a function y=f(t) is a linear differential P(D) that satisfies the condition P(D)[f(t)] =0. This is the same as saying that f(t) is a solution of the homogenous differential equation P(D)f(t)=0. Example: the homogeneous solution of the linear differential equation y 4y 0 is y c1 c 2 sin 2t c 3 cos 2t . Therefore an annihilato r of Note : y 4y 0 is the same as DD 2 1 y 0 y 5 7 sin 2t 4 cos 2t is D D 2 1 Problem 1. Find an annihilator for each of the following functions: Function Annihilator 1. D 2 D 1(D 2 1) 1. y 5 2x 3e x 4 sin x 2. y e 2x cosh x sinh x e x e x e x e x e 2x 2 2 2x x e e e 3x 2.D-3 3. The characteri stic roots are 2 3i 3. y xe 2x cos 3x double roots . D 2 4D 132 4. y t 2 e 2t e t 4te t 5. y 3 4x sin x 4. ( D 1) 2 ( D 2) 3 5. D 2 ( D 2 1) 6. (D-1)(D+2) 6. y 3e x 5e 2x 7. 2t +5 7. D 2 8. D 13 9. The characteri stic roots are 8. t 2 e t 9. t 2 e t cos 5t 1 5i, triple roots . D 2 2D 263 10. t 2e 2t 5t 2 e t 7 sin 2t 10. D 2 D 2( D 1) 3 D 2 4 11. 1 6x 2x 3 11. D 4 12. 3x 2 xe x cos 2x 12. D 3 D 2 2D 5 -1- 2 13. e x 2xe x x 2 e x 14. 2 e x 13. ( D 1)( D 1) 3 2 4 4e x e 2x 15. cos 2 x 14. D( D 1)( D 2) 1 cos 2x 1 1 cos 2x 2 2 2 e x e x 16. x 2 sinh x x 2 2 15. D( D 2 4) 3 16. ( D 1) 3 ( D 13 D 2 1 Finding the general form of the particular solution of a non-homogeneous linear differential equation by using annihilators. Step 1. Express the DE in linear differential form, that is, L(y)=g(x) Step 2. Find the homogeneous solution (complementary solution) of the differential equation, that is find the general solution of L(y)=0 Step 3.. Find an annihilator L1for g(x), that is L1(g(x)=0 Step 4. Operate on both sides of the non-homogeneous equation with the annihilator L1, that is, L1 L(y) L1 (g(x) 0 Step 5. Find the homogeneou s solution (complemen tary solution) of the differenti al equation L1 L( y ) 0 Step 6. The general for the particular solution of L( y ) g( x ) is given by e lim inating from the solution of L1 L( y ) 0, the terms which belong to the solution of L( y ) 0 Problem 2. Find the general form of a particular solution of the following differential equation. a) D( D 1) 2 y 5 x Yh c1 c 2 e x c 2 xe x An annihilato r for 5 t is D 2 D 3 ( D 1) 2 y 0 y k 1 k 2 x k 3 x 2 k 4 e x k 5 xe x Yp Ax Bx 2 -2- b ) ( D 2)( D 1)y 3e t 5 Yh c1e t c 2 e 2t An annihilato r for 3e t 5 is D( D 1) D( D 1)( D 2)( D 1)y D( D 1) e t 5 0 y k 1 k 2 e t k 3 e t k 4 e 2t Yp A Be t c) D( D 1)( D 2) 2 y 5te 2t Yh c1 c 2 e t c 3 e 2t c 4 xe 2t An annihilato r is ( D 2) 2 D( D 1)( D 2) 4 y y c1 c 2 e t c 3 e 2t c 4 xe 2t c 5 x 2 e 2t c 6 x 3 e 2t Yp Ax 2 e 2t cBx 3 e 2t d ) D 2 9 D 2 2D 2 y 5 cos 3t 3e t sin t a 2 2a 2 0 a 2 4 4(1)( 2) 2 2 2i 1 i 2 Yh c1 sin 3t c 2 cos 3t e t c 3 sin t c 4 cos t An annihilato r for 5 cos 3t 3e t sin t is D 2 9 D 2 2D 2 D2 9 2 D 2 2D 22 y y c1 sin 3t c 2 cos 3t xc 3 sin 3t c 4 cos 3t e t c 5 sin t c 6 cos t xe t c 7 sin t c 8 cos t Yp xA sin 3t B cos 3t xe t C sin t D cos t e) 2D 3 3D 2 3D 2 y e x e x Yh c1e x c 2e 2x c3 2 (D 1)(D 2)(2D 1)y e 2x 2 e 2x 1 x e2 An annihilato r for e 2x 2 e 2x is D( D 1)( D 1) 2 D( D 1) ( D 2)( 2D 1)y 0 y c1 c 2 e Yp A Bxe x -3- x c 3 xe x c 4e 2x c5 1 x e2 Problem 3. Solve the IVP y - 5y x - 2 D 2 5Dy x 2 D(D 5)y x 2 Yh C1 C 2e 5x An annihilato r for x 2 is D 2 D 3 ( D 5)y 0 y c1 c 2 x c 3 x 2 c 4 e 5x Yp Ax Bx 2 Yp A 2Bx, Yp 2B 2B 5A 2Bx x 2 1 5A 2B 2 B 10 9 1 Yp x x2 9 25 10 10B 1 A 25 9 1 Y C1 C 2 e 5x x x2 25 10 . Problem 4. Solve the given differential equation by un-determinate coefficients y y 12y e 4x D 2 D 12y e 4x D 4)(D 3y e 4x Yh c1e 3x c 2e 4x An annihilato r for e 4x is ( D 4) D 4) 2 ( D 3 y 0 y c1e 3x c 2 e 4x c 3 xe 4x Yp Axe 4x , Yp Ae 4x 4Axe 4x , Yp 8Ae 4x 16xe 4x y y 12y e 4x 8Ae 4x 16xe 4x Ae 4x 4Axe 4x 12Axe 4x e 4x 7 Ae 4x e 4x A 1 1 1 Yp xe 4x y c1e 3x c 2 e 4x xe 4x 7 7 7 Problem 5. Solve the DE of problem 3 by using the exponential shifting. ( D 2 D 12)y e 4x e 4x ( D 4)( D 3)y 1 ( D 4 4)( D 4 3) e 4x y 1 D( D 7 ) e 4x y 1 ( D 7 ) e 4x y x c e 7 x ( D 7 ) e 4x y xe 7 x ce 7 x ( D 7 7 ) e 7 x e 4x y xe 7 x ce 7 x D e 3x y xe 7 x ce 7 x e 3x y y 1 7x 1 7x c 7x 1 xe e e c 2 e 3x y xe 7 x c1e 7 x c 2 7 49 7 7 1 4x xe c1e 4x c 2 e 3x 7 -4-