Download Differential Equations Sanchez

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Differential Equations
Part II -Summary 6
Annihilators
Sanchez
Annihilators. An annihilator of a function y=f(t) is a linear differential P(D) that satisfies
the condition P(D)[f(t)] =0. This is the same as saying that f(t) is a solution of the
homogenous differential equation P(D)f(t)=0.
Example: the homogeneous solution of the linear differential equation
y   4y  0 is y  c1  c 2 sin 2t  c 3 cos 2t . Therefore an annihilato r of


Note : y   4y  0 is the same as DD 2  1 y  0
y  5  7 sin 2t  4 cos 2t is D D 2  1
Problem 1. Find an annihilator for each of the following functions:
Function
Annihilator
1. D 2 D  1(D 2  1)
1. y  5  2x  3e x  4 sin x
2. y  e 2x cosh x  sinh x 
 e x  e x e x  e x
 e 2x 


2
2

 2x x
 e e  e 3x


2.D-3
3. The characteri stic roots are 2  3i
3. y  xe 2x cos 3x
double roots .
D 2  4D  132
4. y  t 2 e 2t  e t  4te t
5. y  3  4x  sin x
4. ( D  1) 2 ( D  2) 3
5. D 2 ( D 2  1)
6. (D-1)(D+2)
6. y  3e x  5e 2x
7. 2t +5
7. D 2
8. D  13
9. The characteri stic roots are
8. t 2 e  t
9. t 2 e  t cos 5t
 1  5i, triple roots .
D 2  2D  263

10. t  2e 2t  5t 2 e t  7 sin 2t
10. D 2 D  2( D  1) 3 D 2  4
11. 1  6x  2x 3
11. D 4
12. 3x 2  xe x cos 2x
12. D 3 D 2  2D  5

-1-
2

13. e  x  2xe x  x 2 e x

14. 2  e x
13. ( D  1)( D  1) 3
2  4  4e x  e 2x
15. cos 2 x 
14. D( D  1)( D  2)
1  cos 2x 1 1
  cos 2x
2
2 2
 e x  e x
16. x 2 sinh x  x 2 

2

15. D( D 2  4)





3
16. ( D  1) 3 ( D  13  D 2  1
Finding the general form of the particular solution of a non-homogeneous linear
differential equation by using annihilators.
Step 1. Express the DE in linear differential form, that is, L(y)=g(x)
Step 2. Find the homogeneous solution (complementary solution) of the differential
equation, that is find the general solution of L(y)=0
Step 3.. Find an annihilator L1for g(x), that is L1(g(x)=0
Step 4. Operate on both sides of the non-homogeneous equation with the annihilator L1,
that is,
L1 L(y)  L1 (g(x)  0
Step 5. Find the homogeneou s solution (complemen tary solution) of the differenti al
equation L1 L( y )  0
Step 6. The general for the particular solution of L( y )  g( x ) is given by
e lim inating from the solution of L1 L( y )  0, the terms which belong to the
solution of L( y )  0
Problem 2. Find the general form of a particular solution of the following differential
equation.
a) D( D  1) 2 y  5  x
 Yh  c1  c 2 e  x  c 2 xe  x
An annihilato r for 5  t is D 2  D 3 ( D  1) 2 y  0
 y  k 1  k 2 x  k 3 x 2  k 4 e  x  k 5 xe  x
 Yp  Ax  Bx 2
-2-
b ) ( D  2)( D  1)y  3e t  5  Yh  c1e  t  c 2 e 2t
An annihilato r for 3e t  5 is D( D  1)


 D( D  1)( D  2)( D  1)y  D( D  1) e t  5  0
 y  k 1  k 2 e  t  k 3 e t  k 4 e 2t
 Yp  A  Be t
c) D( D  1)( D  2) 2 y  5te 2t  Yh  c1  c 2 e t  c 3 e 2t  c 4 xe 2t
An annihilato r is ( D  2) 2  D( D  1)( D  2) 4 y
 y  c1  c 2 e t  c 3 e  2t  c 4 xe  2t  c 5 x 2 e  2t  c 6 x 3 e  2t
 Yp  Ax 2 e  2t  cBx 3 e  2t



d ) D 2  9 D 2  2D  2 y  5 cos 3t  3e t sin t
a 2  2a  2  0  a 
2  4  4(1)( 2)
2
2  2i
 1 i
2

 Yh  c1 sin 3t  c 2 cos 3t  e t c 3 sin t  c 4 cos t 


An annihilato r for 5 cos 3t  3e t sin t is D 2  9 D 2  2D  2

 D2  9
2 D 2  2D  22 y

 y  c1 sin 3t  c 2 cos 3t  xc 3 sin 3t  c 4 cos 3t 
 e t c 5 sin t  c 6 cos t   xe t c 7 sin t  c 8 cos t 
 Yp  xA sin 3t  B cos 3t   xe t C sin t  D cos t 

 
e) 2D 3  3D 2  3D  2 y  e x  e  x
 Yh  c1e
x
 c 2e
2x
 c3
2  (D  1)(D  2)(2D  1)y  e 2x  2  e 2x
1
x
e2
An annihilato r for e 2x  2  e  2x is D( D  1)( D  1)
2
 D( D  1) ( D  2)( 2D  1)y  0  y  c1  c 2 e
 Yp  A  Bxe  x
-3-
x
 c 3 xe
x
 c 4e
2x
 c5
1
x
e2
Problem 3. Solve the IVP y  - 5y   x - 2
D 2  5Dy  x  2  D(D  5)y  x  2  Yh  C1  C 2e 5x
An annihilato r for x  2 is D 2  D 3 ( D  5)y  0
 y  c1  c 2 x  c 3 x 2  c 4 e 5x  Yp  Ax  Bx 2
Yp  A  2Bx, Yp  2B  2B  5A  2Bx  x  2
1

  5A  2B  2 B   10
9
1


 Yp 
x  x2
9
25
10
  10B  1
 A
25

9
1
 Y  C1  C 2 e 5x 
x  x2
25
10
.
Problem 4.
Solve the given differential equation by un-determinate coefficients
y   y   12y  e 4x
D 2  D  12y  e 4x  D  4)(D  3y  e 4x  Yh  c1e 3x  c 2e 4x
An annihilato r for e 4x is ( D  4)


 D  4) 2 ( D  3 y  0  y  c1e 3x  c 2 e 4x  c 3 xe 4x
 Yp  Axe 4x , Yp  Ae 4x  4Axe 4x , Yp  8Ae 4x  16xe 4x


y   y   12y  e 4x  8Ae 4x  16xe 4x  Ae 4x  4Axe 4x  12Axe 4x  e 4x
 7 Ae 4x  e 4x  A 
1
1
1
 Yp  xe 4x  y  c1e 3x  c 2 e 4x  xe 4x
7
7
7
Problem 5.
Solve the DE of problem 3 by using the exponential shifting.
( D 2  D  12)y  e 4x  e 4x ( D  4)( D  3)y  1






 ( D  4  4)( D  4  3) e  4x y  1  D( D  7 ) e  4x y  1  ( D  7 ) e  4x y  x  c




 e 7 x ( D  7 ) e  4x y  xe 7 x  ce 7 x  ( D  7  7 ) e 7 x e  4x y  xe 7 x  ce 7 x
 
 D e 3x y  xe 7 x  ce 7 x
 e 3x y 
y
1 7x 1 7x c 7x
1
xe  e  e  c 2  e 3x y  xe 7 x  c1e 7 x  c 2
7
49
7
7
1 4x
xe  c1e 4x  c 2 e  3x
7
-4-
Related documents