Download here

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
GEOMETRY
UNIT 5
Name _______________________
Two objects are ___________________ if they have the same size and shape. (Symbol: _____)
Two polygons are __________________ if and only if their vertices can be matched up so that
_____________________ _______________ (angles and sides) are congruent.
When describing congruent polygons vertices are listed in order of correspondence.
Congruence
Statement
ABC  XYZ
CBA  ______
BCA  ______
ACB  ______
ABCDE  PQRST
BCDEA  ________
AEDCB  ________
CDEAB  ________
**It may be helpful to write the congruence statement on 2 lines and be sure to mark up the diagrams!**
Definition of Congruent Triangles:
Two triangles are congruent if and only if their vertices can be matched up so the
______________________ _____________ of the triangles are congruent.
________________________________________________________________________________
(abbreviated as CPCTC.)
If LMN  RST, then the following corresponding parts are congruent.
Angles: L  _____
Sides:
LM  _____
M  _____
MN  _____
N  _____
LN  _____
Since, the definition is an “if and only if” statement, it also means that if you know the above
corresponding parts are congruent, then you can say the triangles are congruent.
The triangles shown are congruent. Complete the following.
1) ABD  ______
2) BC  _____
3) DC = _____
4) ABD  _____
5)
BD is called a _______________ _____________ of the two s.
 The _________________ ___________________ allows you to conclude that BD  BD.
Suppose Pentagon ABCDE  VWXYZ. Complete the following.
6) C  _____
9) XW  ______
7) EA  _______
8) C=52˚ then X= ____˚
10) CBAED  ________ 11)  ZYX   _______
A
O
B
D
12) ABO _______
13) OD
 _____
14) C   ______
15) AB
 _____
16) B   ______
17) DOC _______
C
Congruence Statement: RUS  TSU
R
T
Z
S
U
O
5y - 17
G
18) RSU   _____
19) SUR   _____
20) ST  _____
21) RS  _____
22) UTS   _____
23)ZTU   _____
Congruence Statement: CTA  DGO
24) CAT   _____
2x - 16
C
25) CA  ____
26) AT  _____ 27) TC  _____
D
29) x= _____
28) D = ____
30) y= _____
31)CA=____ 32)AT=____ 33)OD=___ 34)OG=___
x+2
32
A
3y+3
T
GEOMETRY
UNIT 5
Congruent Figures Homework
Name _______________________
Suppose  WXY   ABF. Complete the following.
1) W  _____
2) mB =_____
3) YX  _____
4) AF = _____
5) YWX  _____
6) BFA  _____
Justification (Hint You can write the abbreviation!): __________________
7) If DEF  RST, mD = 100, and mF = 40, name four congruent angles. (HINT: It may help
to draw a diagram of each). _____________________________________________
8)Suppose LXR  FNE. List six congruences (three pairs of angles and three pairs of segments)
that can be justified by CPCTC.
Angles: __________
__________ __________
Sides: __________
__________
__________
Suppose Hexagon AEIOUY BCDFGH . Complete the following.
9) I  _____
10)YU  _______
11) C=50˚ then X= ____˚
12) GF  ______ 13) FDCBHG  ________ 14)  UOI   _______
J
K
L
M
N
15) JLK  _____
16) JL  ______
17) J  _____
18) M  _____
19) MNL  _____
20) LMN  _____
ABC   XYZ
21) x= ______
y=_____
z=_____
22) If A = 82˚ and C =33˚, find Y. _______
AB= 4x + 7
BC=5y
AC=6z+1
XY= 5x + 4
YZ= 4y+5
XZ= 7z – 5